January 17, 2019
Let $A$ be a subset of $G$, where $G$ is a finite abelian group of torsion $r$. It was conjectured by Ruzsa that if $|A+A|\leq K|A|$, then $A$ is contained in a coset of $G$ of size at most $r^{CK}|A|$ for some constant $C$. The case $r=2$ received considerable attention in a sequence of papers, and was resolved by Green and Tao. Recently, Even-Zohar and Lovett settled the case when $r$ is a prime. In this paper, we confirm the conjecture when $r$ is a power of prime. In part...
February 12, 2015
Following the sum-product paradigm, we prove that for a set $B$ with polynomial growth, the product set $B.B$ cannot contain large subsets with size of order $|B|^2$ with small doubling. It follows that the additive energy of $B.B$ is asymptotically $o(|B|^6)$. In particular, we extend to sets of small doubling and polynomial growth the classical Multiplication Table theorem of Erd\H{o}s saying that $|[1..n]. [1..n]| = o(n^2)$.
November 13, 2018
We study the number of $s$-element subsets $J$ of a given abelian group $G$, such that $|J+J|\leq K|J|$. Proving a conjecture of Alon, Balogh, Morris and Samotij, and improving a result of Green and Morris, who proved the conjecture for $K$ fixed, we provide an upper bound on the number of such sets which is tight up to a factor of $2^{o(s)},$ when $G=\mathbb{Z}$ and $K=o(s/(\log n)^3)$. We also provide a generalization of this result to arbitrary abelian groups which is tigh...
April 14, 2010
We show that for any set A in a finite Abelian group G that has at least c |A|^3 solutions to a_1 + a_2 = a_3 + a_4, where a_i belong A there exist sets A' in A and L in G, |L| \ll c^{-1} log |A| such that A' is contained in Span of L and A' has approximately c |A|^3 solutions to a'_1 + a'_2 = a'_3 + a'_4, where a'_i belong A'. We also study so-called symmetric sets or, in other words, sets of large values of convolution.
July 23, 2011
Assume that $A\subseteq \Fp, B\subseteq \Fp^{*}$, $\1/4\leqslant\frac{|B|}{|A|},$ $|A|=p^{\alpha}, |B|=p^{\beta}$. We will prove that for $p\geqslant p_0(\beta)$ one has $$\sum_{b\in B}E_{+}(A, bA)\leqslant 15 p^{-\frac{\min\{\beta, 1-\alpha\}}{308}}|A|^3|B|.$$ Here $E_{+}(A, bA)$ is an additive energy between subset $A$ and it's multiplicative shift $bA$. This improves previously known estimates of this type.
October 13, 2022
For a subset $A$ of an abelian group $G$, given its size $|A|$, its doubling $\kappa=|A+A|/|A|$, and a parameter $s$ which is small compared to $|A|$, we study the size of the largest sumset $A+A'$ that can be guaranteed for a subset $A'$ of $A$ of size at most $s$. We show that a subset $A'\subseteq A$ of size at most $s$ can be found so that $|A+A'| = \Omega(\min(\kappa^{1/3},s)|A|)$. Thus a sumset significantly larger than the Cauchy--Davenport bound can be guaranteed by a...
December 1, 2017
We prove new results on additive properties of finite sets $A$ with small multiplicative doubling $|AA|\leq M|A|$ in the category of real/complex sets as well as multiplicative subgroups in the prime residue field. The improvements are based on new combinatorial lemmata, which may be of independent interest. Our main results are the inequality $$ |A-A|^3|AA|^5 \gtrsim |A|^{10}, $$ over the reals, "redistributing" the exponents in the textbook Elekes sum-product inequality a...
April 24, 2012
We are discussing the theorem about the volume of a set $A$ of $Z^n$ having a small doubling property $|2A| < Ck, k=|A|$ and oher problems of Structure Theory of Set Addition (Additive Combinatorics).
March 26, 2021
We show that for any finite set $A$ and an arbitrary $\varepsilon>0$ there is $k=k(\varepsilon)$ such that the higher energy ${\mathsf{E}}_k(A)$ is at most $|A|^{k+\varepsilon}$ unless $A$ has a very specific structure. As an application we obtain that any finite subset $A$ of the real numbers or the prime field either contains an additive Sidon--type subset of size $|A|^{1/2+c}$ or a multiplicative Sidon--type subset of size $|A|^{1/2+c}$.
June 23, 2023
The entropic doubling $\sigma_{\operatorname{ent}}[X]$ of a random variable $X$ taking values in an abelian group $G$ is a variant of the notion of the doubling constant $\sigma[A]$ of a finite subset $A$ of $G$, but it enjoys somewhat better properties; for instance, it contracts upon applying a homomorphism. In this paper we develop further the theory of entropic doubling and give various applications, including: (1) A new proof of a result of P\'alv\"olgyi and Zhelezov...