ID: 0805.3689

Eigenvalues and Eigenfunctions of the Scalar Laplace Operator on Calabi-Yau Manifolds

May 23, 2008

View on ArXiv
Volker Braun, Tamaz Brelidze, Michael R. Douglas, Burt A. Ovrut
High Energy Physics - Theory

A numerical algorithm for explicitly computing the spectrum of the Laplace-Beltrami operator on Calabi-Yau threefolds is presented. The requisite Ricci-flat metrics are calculated using a method introduced in previous papers. To illustrate our algorithm, the eigenvalues and eigenfunctions of the Laplacian are computed numerically on two different quintic hypersurfaces, some Z_5 x Z_5 quotients of quintics, and the Calabi-Yau threefold with Z_3 x Z_3 fundamental group of the heterotic standard model. The multiplicities of the eigenvalues are explained in detail in terms of the irreducible representations of the finite isometry groups of the threefolds.

Similar papers 1

Eigenvalues and eigenforms on Calabi-Yau threefolds

November 27, 2020

93% Match
Anthony Ashmore
Differential Geometry

We present a numerical algorithm for computing the spectrum of the Laplace-de Rham operator on Calabi-Yau manifolds, extending previous work on the scalar Laplace operator. Using an approximate Calabi-Yau metric as input, we compute the eigenvalues and eigenforms of the Laplace operator acting on $(p,q)$-forms for the example of the Fermat quintic threefold. We provide a check of our algorithm by computing the spectrum of $(p,q)$-eigenforms on $\mathbb{P}^{3}$.

Find SimilarView on arXiv
Anthony Ashmore, Yang-Hui He, ... , Ovrut Burt A.
Numerical Analysis
Differential Geometry
Numerical Analysis
Spectral Theory

We give the first numerical calculation of the spectrum of the Laplacian acting on bundle-valued forms on a Calabi-Yau three-fold. Specifically, we show how to compute the approximate eigenvalues and eigenmodes of the Dolbeault Laplacian acting on bundle-valued $(p,q)$-forms on K\"ahler manifolds. We restrict our attention to line bundles over complex projective space and Calabi-Yau hypersurfaces therein. We give three examples. For two of these, $\mathbb{P}^3$ and a Calabi-Y...

Numerical Ricci-flat metrics on K3

June 15, 2005

88% Match
Matthew Headrick, Toby Wiseman
Differential Geometry

We develop numerical algorithms for solving the Einstein equation on Calabi-Yau manifolds at arbitrary values of their complex structure and Kahler parameters. We show that Kahler geometry can be exploited for significant gains in computational efficiency. As a proof of principle, we apply our methods to a one-parameter family of K3 surfaces constructed as blow-ups of the T^4/Z_2 orbifold with many discrete symmetries. High-resolution metrics may be obtained on a time scale o...

Find SimilarView on arXiv

Calabi-Yau metrics, CFTs and random matrices

February 11, 2022

86% Match
Anthony Ashmore
Differential Geometry

Calabi-Yau manifolds have played a key role in both mathematics and physics, and are particularly important for deriving realistic models of particle physics from string theory. Unfortunately, very little is known about the explicit metrics on these spaces, leaving us unable, for example, to compute particle masses or couplings in these models. We review recent progress in this direction on using numerical approximations to compute the spectrum of the Laplacian on these space...

Find SimilarView on arXiv

Numerical Metrics, Curvature Expansions and Calabi-Yau Manifolds

December 23, 2019

86% Match
Wei Cui, James Gray
High Energy Physics - Theory

We discuss the extent to which numerical techniques for computing approximations to Ricci-flat metrics can be used to investigate hierarchies of curvature scales on Calabi-Yau manifolds. Control of such hierarchies is integral to the validity of curvature expansions in string effective theories. Nevertheless, for seemingly generic points in moduli space it can be difficult to analytically determine if there might be a highly curved region localized somewhere on the Calabi-Yau...

Find SimilarView on arXiv

Level Crossings, Attractor Points and Complex Multiplication

March 31, 2023

85% Match
Hamza Ahmed, Fabian Ruehle
High Energy Physics - Theory

We study the complex structure moduli dependence of the scalar Laplacian eigenmodes for one-parameter families of Calabi-Yau $n$-folds in P^{n+1}. It was previously observed that some eigenmodes get lighter while others get heavier as a function of these moduli, which leads to eigenvalue crossing. We identify the cause for this behavior for the torus. We then show that at points in a sublocus of complex structure moduli space where Laplacian eigenmodes cross, the torus has co...

Find SimilarView on arXiv

Degeneration of Ricci-flat Calabi-Yau manifolds and its applications

July 28, 2015

85% Match
Yuguang Zhang
Differential Geometry
Algebraic Geometry
Metric Geometry

This is a survey article of the recent progresses on the metric behaviour of Ricci-flat K\"{a}hler-Einstein metrics along degenerations of Calabi-Yau manifolds.

Find SimilarView on arXiv

Numerical Calabi-Yau metrics

December 11, 2006

84% Match
Michael R. Douglas, Robert L. Karp, ... , Reinbacher Rene
High Energy Physics - Theory

We develop numerical methods for approximating Ricci flat metrics on Calabi-Yau hypersurfaces in projective spaces. Our approach is based on finding balanced metrics, and builds on recent theoretical work by Donaldson. We illustrate our methods in detail for a one parameter family of quintics. We also suggest several ways to extend our results.

Find SimilarView on arXiv

Bootstrap Bounds on Closed Hyperbolic Manifolds

July 20, 2021

84% Match
James Bonifacio
Differential Geometry
Spectral Theory

The eigenvalues of the Laplace-Beltrami operator and the integrals of products of eigenfunctions must satisfy certain consistency conditions on compact Riemannian manifolds. These consistency conditions are derived by using spectral decompositions to write quadruple overlap integrals in terms of products of triple overlap integrals in multiple ways. In this paper, we show how these consistency conditions imply bounds on the Laplacian eigenvalues and triple overlap integrals o...

Find SimilarView on arXiv

Energy functionals for Calabi-Yau metrics

August 19, 2009

84% Match
Matthew Headrick, Ali Nassar
Differential Geometry

We identify a set of "energy" functionals on the space of metrics in a given Kaehler class on a Calabi-Yau manifold, which are bounded below and minimized uniquely on the Ricci-flat metric in that class. Using these functionals, we recast the problem of numerically solving the Einstein equation as an optimization problem. We apply this strategy, using the "algebraic" metrics (metrics for which the Kaehler potential is given in terms of a polynomial in the projective coordinat...

Find SimilarView on arXiv