June 27, 2008
Similar papers 3
February 11, 2014
A bootstrap percolation process on a graph G is an "infection" process which evolves in rounds. Initially, there is a subset of infected nodes and in each subsequent round every uninfected node which has at least r infected neighbours becomes infected and remains so forever. The parameter r > 1 is fixed. We consider this process in the case where the underlying graph is an inhomogeneous random graph whose kernel is of rank 1. Assuming that initially every vertex is infected...
February 13, 2007
In majority bootstrap percolation on a graph G, an infection spreads according to the following deterministic rule: if at least half of the neighbours of a vertex v are already infected, then v is also infected, and infected vertices remain infected forever. Percolation occurs if eventually every vertex is infected. The elements of the set of initially infected vertices, A \subset V(G), are normally chosen independently at random, each with probability p, say. This process ...
May 4, 2017
In the polluted bootstrap percolation model, the vertices of a graph are independently declared initially occupied with probability p or closed with probability q. At subsequent steps, a vertex becomes occupied if it is not closed and it has at least r occupied neighbors. On the cubic lattice Z^d of dimension d>=3 with threshold r=2, we prove that the final density of occupied sites converges to 1 as p and q both approach 0, regardless of their relative scaling. Our result pa...
June 19, 2024
In the random $r$-neighbour bootstrap percolation process on a graph $G$, a set of initially infected vertices is chosen at random by retaining each vertex of $G$ independently with probability $p\in (0,1)$, and "healthy" vertices get infected in subsequent rounds if they have at least $r$ infected neighbours. A graph $G$ \emph{percolates} if every vertex becomes eventually infected. A central problem in this process is to determine the critical probability $p_c(G,r)$, at whi...
May 29, 2015
Bootstrap percolation is a type of cellular automaton on graphs, introduced as a simple model of the dynamics of ferromagnetism. Vertices in a graph can be in one of two states: `healthy' or `infected' and from an initial configuration of states, healthy vertices become infected by local rules. While the usual bootstrap processes are monotone in the sets of infected vertices, in this paper, a modification is examined in which infected vertices can return to a healthy state. V...
August 30, 2013
In this paper, we study the k-neighbor bootstrap percolation process on the d-dimensional grid [n]^d, and show that the minimum number of initial vertices that percolate is (1-d/k)n^d + O(n^{d-1})$ when d<=k<=2d. This confirms a conjecture of Pete.
November 5, 2011
A bootstrap percolation process on a graph $G$ is an "infection" process which evolves in rounds. Initially, there is a subset of infected nodes and in each subsequent round each uninfected node which has at least $r$ infected neighbours becomes infected and remains so forever. The parameter $r\geq 2$ is fixed. Such processes have been used as models for the spread of ideas or trends within a network of individuals. We analyse bootstrap percolation process in the case where...
May 10, 2016
Bootstrap percolation on a graph with infection threshold $r\in \mathbb{N}$ is an infection process, which starts from a set of initially infected vertices and in each step every vertex with at least $r$ infected neighbours becomes infected. We consider bootstrap percolation on the binomial random graph $G(n,p)$, which was investigated among others by Janson, \L uczak, Turova and Valier (2012). We improve their results by strengthening the probability bounds for the number of...
March 31, 2017
The $r$-neighbour bootstrap process is an update rule for the states of vertices in which `uninfected' vertices with at least $r$ `infected' neighbours become infected and a set of initially infected vertices is said to \emph{percolate} if eventually all vertices are infected. For every $r \geq 3$, a sharp condition is given for the minimum degree of a sufficiently large graph that guarantees the existence of a percolating set of size $r$. In the case $r=3$, for $n$ large eno...
June 22, 2017
In the polluted bootstrap percolation model, vertices of the cubic lattice $\mathbb{Z}^3$ are independently declared initially occupied with probability $p$ or closed with probability $q$. Under the standard (respectively, modified) bootstrap rule, a vertex becomes occupied at a subsequent step if it is not closed and it has at least $3$ occupied neighbors (respectively, an occupied neighbor in each coordinate). We study the final density of occupied vertices as $p,q\to 0$. W...