November 30, 2016
For fixed $r\geq 2$, we consider bootstrap percolation with threshold $r$ on the Erd\H{o}s-R\'enyi graph ${\cal G}_{n,p}$. We identify a threshold for $p$ above which there is with high probability a set of size $r$ which can infect the entire graph. This improves a result of Feige, Krivelevich and Reichman, which gives bounds for this threshold, up to multiplicative constants. As an application of our results, we also obtain an upper bound for the threshold for $K_4$-boots...
April 24, 2017
We investigate bootstrap percolation with infection threshold $r> 1$ on the binomial $k$-uniform random hypergraph $H_k(n,p)$ in the regime $n^{-1}\ll n^{k-2}p \ll n^{-1/r}$, when the initial set of infected vertices is chosen uniformly at random from all sets of given size. We establish a threshold such that if there are less vertices in the initial set of infected vertices, then whp only a few additional vertices become infected, while if the initial set of infected vertice...
October 24, 2015
Graph bootstrap percolation is a simple cellular automaton introduced by Bollob\'as in 1968. Given a graph $H$ and a set $G \subseteq E(K_n)$ we initially "infect" all edges in $G$ and then, in consecutive steps, we infect every $e \in K_n$ that completes a new infected copy of $H$ in $K_n$. We say that $G$ percolates if eventually every edge in $K_n$ is infected. The extremal question about the size of the smallest percolating sets when $H = K_r$ was answered independently b...
March 9, 2024
The $r$-edge bootstrap percolation on a graph is an activation process of the edges. The process starts with some initially activated edges and then, in each round, any inactive edge whose one of endpoints is incident to at least $r$ active edges becomes activated. A set of initially activated edges leading to the activation of all edges is said to be a percolating set. Denote the minimum size of a percolating set in the $r$-edge bootstrap percolation process on a graph $G$ b...
February 24, 2012
The Hamming torus of dimension $d$ is the graph with vertices $\{1,\dots,n\}^d$ and an edge between any two vertices that differ in a single coordinate. Bootstrap percolation with threshold $\theta$ starts with a random set of open vertices, to which every vertex belongs independently with probability $p$, and at each time step the open set grows by adjoining every vertex with at least $\theta$ open neighbors. We assume that $n$ is large and that $p$ scales as $n^{-\alpha}$ f...
October 25, 2002
The following article deals with the critical value p_c of the three-dimensional bootstrap percolation. We will check the behavior of p_c for different lengths of the lattice and additionally we will scale p_c in the limit of an infinite lattice.
July 3, 2019
In this paper we fill in a fundamental gap in the extremal bootstrap percolation literature, by providing the first proof of the fact that for all $d \geq 1$, the size of the smallest percolating sets in $d$-neighbour bootstrap percolation on $[n]^d$, the $d$-dimensional grid of size $n$, is $n^{d-1}$. Additionally, we prove that such sets percolate in time at most $c_d n^2$, for some constant $c_d >0 $ depending on $d$ only.
January 13, 2012
Bootstrap percolation has been used effectively to model phenomena as diverse as emergence of magnetism in materials, spread of infection, diffusion of software viruses in computer networks, adoption of new technologies, and emergence of collective action and cultural fads in human societies. It is defined on an (arbitrary) network of interacting agents whose state is determined by the state of their neighbors according to a threshold rule. In a typical setting, bootstrap per...
May 6, 2019
For any integer $r\geqslant0$, the $r$-neighbor bootstrap percolation on a graph is an activation process of the vertices. The process starts with some initially activated vertices and then, in each round, any inactive vertex with at least $r$ active neighbors becomes activated. A set of initially activated vertices leading to the activation of all vertices is said to be a percolating set. Denote the minimum size of a percolating set in the $r$-neighbor bootstrap percolation ...
October 21, 2015
The process of $H$-bootstrap percolation for a graph $H$ is a cellular automaton, where, given a subset of the edges of $K_n$ as initial set, an edge is added at time $t$ if it is the only missing edge in a copy of $H$ in the graph obtained through this process at time $t-1$. We discuss an extremal question about the time of $K_r$-bootstrap percolation, namely determining maximal times for an $n$-vertex graph before the process stops. We determine exact values for $r=4$ and f...