July 10, 2009
Similar papers 3
July 28, 2016
We describe and analyze some novel approaches for studying the dynamics of Ising spin glass models. We first briefly consider the variational approach based on minimizing the Kullback-Leibler divergence between independent trajectories and the real ones and note that this approach only coincides with the mean field equations from the saddle point approximation to the generating functional when the dynamics is defined through a logistic link function, which is the case for the...
February 1, 2011
The study by Glauber of the time-dependent statistics of the Ising chain is extended to the case where each spin is influenced unequally by its nearest neighbours. The asymmetry of the dynamics implies the failure of the detailed balance condition. The functional form of the rate at which an individual spin changes its state is constrained by the global balance condition with respect to the equilibrium measure of the Ising chain. The local magnetization, the equal-time and tw...
August 30, 2014
We propose a generic framework to describe classical Ising-like models defined on arbitrary graphs. The energy spectrum is shown to be the Hadamard transform of a suitably defined sparse "coding" vector associated with the graph. We expect that the existence of a fast Hadamard transform algorithm (used for instance in image ccompression processes), together with the sparseness of the coding vector, may provide ways to fasten the spectrum computation.. Applying this formalism ...
October 18, 2016
Network reliability is the probability that a dynamical system composed of discrete elements interacting on a network will be found in a configuration that satisfies a particular property. We introduce a new reliability property, Ising feasibility, for which the network reliability is the Ising model s partition function. As shown by Moore and Shannon, the network reliability can be separated into two factors: structural, solely determined by the network topology, and dynamic...
November 3, 1998
We study analytically and numerically the statics and the off-equilibrium dynamics of spin models over finitely connected random graphs. We identify a threshold value for the connectivity beyond which the loop structure of the graph becomes thermodynamically relevant. Glauber dynamics simulations show that this loop structure is responsible for the onset of dynamical features of a local character (dynamical heterogeneities and spontaneous time scale separation), consistently ...
December 18, 2003
We discuss various aspects of the statistical formulation of the theory of random graphs, with emphasis on results obtained in a series of our recent publications.
December 10, 2012
The aim of this short note is to draw attention to a method by which the partition function and marginal probabilities for a certain class of random fields on complete graphs can be computed in polynomial time. This class includes Ising models with homogeneous pairwise potentials but arbitrary (inhomogeneous) unary potentials. Similarly, the partition function and marginal probabilities can be computed in polynomial time for random fields on complete bipartite graphs, provide...
April 30, 2008
We consider ferromagnetic Ising models on graphs that converge locally to trees. Examples include random regular graphs with bounded degree and uniformly random graphs with bounded average degree. We prove that the "cavity" prediction for the limiting free energy per spin is correct for any positive temperature and external field. Further, local marginals can be approximated by iterating a set of mean field (cavity) equations. Both results are achieved by proving the local co...
July 7, 2014
We solve the growing asymmetric Ising model [Phys. Rev. E 89, 012105 (2014)] in the topologies of deterministic and stochastic (random) scale-free trees predicting its non-monotonous behavior for external fields smaller than the coupling constant $J$. In both cases we indicate that the crossover temperature corresponding to maximal magnetization decays approximately as $(\ln \ln N)^{-1}$, where $N$ is the number of nodes in the tree.
November 10, 2004
We consider zero-temperature, stochastic Ising models with nearest-neighbor interactions in two and three dimensions. Using both symmetric and asymmetric initial configurations, we study the evolution of the system with time. We examine the issue of convergence of the dynamics and discuss the nature of the final state of the system. By determining a relation between the median number of spin flips per site, the probability p that a spin in the initial spin configuration takes...