July 10, 2009
Similar papers 4
December 19, 2022
The Ising model on networks plays a fundamental role as a testing ground for understanding cooperative phenomena in complex systems. Here we solve the synchronous dynamics of the Ising model on random graphs with an arbitrary degree distribution in the high-connectivity limit. Depending on the distribution of the threshold noise that governs the microscopic dynamics, the model evolves to nonequilibrium stationary states. We obtain an exact dynamical equation for the distribut...
March 17, 2021
Partition functions are an important research object in combinatorics and mathematical physics [Barvinok, 2016]. In this work, we consider the partition function of the Ising antiferromagnet on random regular graphs and characterize its limiting distribution in the replica symmetric phase up to the Kesten-Stigum bound. Our proof relies on a careful execution of the method of moments, spatial mixing arguments and small subgraph conditioning.
October 2, 2017
We prove a large deviations principle for the total spin and the number of edges under the annealed Ising measure on generalized random graphs. We also give detailed results on how the annealing over the Ising model changes the degrees of the vertices in the graph and show how it gives rise to interesting correlated random graphs.
December 4, 2023
Using a single-site mean-field approximation (MFA) and Monte Carlo simulations, we examine Ising-like models on directed regular random graphs. The models are directed-network implementations of the Ising model, Ising model with absorbing states, and majority voter models. When these nonequilibrium models are driven by the heat-bath dynamics, their stationary characteristics, such as magnetization, are correctly reproduced by MFA as confirmed by Monte Carlo simulations. It tu...
October 24, 2022
In this paper, we derive the limit of experiments for one parameter Ising models on dense regular graphs. In particular, we show that the limiting experiment is Gaussian in the low temperature regime, non Gaussian in the critical regime, and an infinite collection of Gaussians in the high temperature regime. We also derive the limiting distributions of the maximum likelihood and maximum pseudo-likelihood estimators, and study limiting power for tests of hypothesis against con...
November 3, 1994
We review recent numerical progress in the study of finite dimensional strongly disordered magnetic systems like spin glasses and random field systems. In particular we report in some details results for the critical properties and the non-equilibrium dynamics of Ising spin glasses. Furthermore we present an overview over recent investigations on the random field Ising model and finally of quantum spin glasses.
April 26, 2007
In this work we show that for every $d < \infty$ and the Ising model defined on $G(n,d/n)$, there exists a $\beta_d > 0$, such that for all $\beta < \beta_d$ with probability going to 1 as $n \to \infty$, the mixing time of the dynamics on $G(n,d/n)$ is polynomial in $n$. Our results are the first polynomial time mixing results proven for a natural model on $G(n,d/n)$ for $d > 1$ where the parameters of the model do not depend on $n$. They also provide a rare example where on...
May 5, 2017
We present an algorithm for the optimization and thermal equilibration of spin glasses - or more generally, cost functions of the Ising form $H=\sum_{\langle i j\rangle} J_{ij} s_i s_j + \sum_i h_i s_i$, defined on graphs with arbitrary connectivity. The algorithm consists of two repeated steps: i) the optimized construction of a random tree of spin clusters on the input problem graph, and ii) the thermal sampling of the generated tree. The randomly generated trees are constr...
March 5, 2011
We derive and study dynamical TAP equations for Ising spin glasses obeying both synchronous and asynchronous dynamics using a generating functional approach. The system can have an asymmetric coupling matrix, and the external fields can be time-dependent. In the synchronously updated model, the TAP equations take the form of self consistent equations for magnetizations at time $t+1$, given the magnetizations at time $t$. In the asynchronously updated model, the TAP equations ...
April 28, 2020
A spin system is a framework in which the vertices of a graph are assigned spins from a finite set. The interactions between neighbouring spins give rise to weights, so a spin assignment can also be viewed as a weighted graph homomorphism. The problem of approximating the partition function (the aggregate weight of spin assignments) or of sampling from the resulting probability distribution is typically intractable for general graphs. In this work, we consider arbitrary spi...