ID: 0907.2051

Slightly improved sum-product estimates in fields of prime order

July 12, 2009

View on ArXiv

Similar papers 2

Stronger sum-product inequalities for small sets

August 25, 2018

90% Match
Misha Rudnev, George Shakan, Ilya Shkredov
Combinatorics
Number Theory

Let $F$ be a field and a finite $A\subset F$ be sufficiently small in terms of the characteristic $p$ of $F$ if $p>0$. We strengthen the "threshold" sum-product inequality $$|AA|^3 |A\pm A|^2 \gg |A|^6\,,\;\;\;\;\mbox{hence} \;\; \;\;|AA|+|A+A|\gg |A|^{1+\frac{1}{5}},$$ due to Roche-Newton, Rudnev and Shkredov, to $$|AA|^5 |A\pm A|^4 \gg |A|^{11-o(1)}\,,\;\;\;\;\mbox{hence} \;\; \;\;|AA|+|A\pm A|\gg |A|^{1+\frac{2}{9}-o(1)},$$ as well as $$ |AA|^{36}|A-A|^{24} \gg |A|^{73...

Find SimilarView on arXiv

An improved sum-product inequality in fields of prime order

November 11, 2010

90% Match
Misha Rudnev
Combinatorics
Group Theory

This note improves the best known exponent 1/12 in the prime field sum-product inequality (for small sets) to 1/11, modulo a logarithmic factor.

Find SimilarView on arXiv

New sum-product type estimates over finite fields

August 3, 2014

90% Match
Oliver Roche-Newton, Misha Rudnev, Ilya D. Shkredov
Combinatorics

Let $F$ be a field with positive odd characteristic $p$. We prove a variety of new sum-product type estimates over $F$. They are derived from the theorem that the number of incidences between $m$ points and $n$ planes in the projective three-space $PG(3,F)$, with $m\geq n=O(p^2)$, is $$O( m\sqrt{n} + km ),$$ where $k$ denotes the maximum number of collinear planes. The main result is a significant improvement of the state-of-the-art sum-product inequality over fields with p...

Find SimilarView on arXiv

An update on the sum-product problem

May 22, 2020

90% Match
Misha Rudnev, Sophie Stevens
Number Theory
Combinatorics

We improve the best known sum-product estimates over the reals. We prove that \[ \max(|A+A|,|AA|)\geq |A|^{\frac{4}{3} + \frac{2}{1167} - o(1)}\,, \] for a finite $A\subset \mathbb R$, following a streamlining of the arguments of Solymosi, Konyagin and Shkredov. We include several new observations to our techniques. Furthermore, \[ |AA+AA|\geq |A|^{\frac{127}{80} - o(1)}\,. \] Besides, for a convex set $A$ we show that \[ |A+A|\geq |A|^{\frac{30}{19}-o(1)}\,. \] This paper ...

Find SimilarView on arXiv

A sum-product estimate in finite fields, and applications

January 29, 2003

90% Match
Jean Bourgain, Nets Katz, Terence Tao
Combinatorics
Number Theory

Let $A$ be a subset of a finite field $F := \Z/q\Z$ for some prime $q$. If $|F|^\delta < |A| < |F|^{1-\delta}$ for some $\delta > 0$, then we prove the estimate $|A+A| + |A.A| \geq c(\delta) |A|^{1+\eps}$ for some $\eps = \eps(\delta) > 0$. This is a finite field analogue of a result of Erdos and Szemeredi. We then use this estimate to prove a Szemeredi-Trotter type theorem in finite fields, and obtain a new estimate for the Erdos distance problem in finite fields, as well as...

Find SimilarView on arXiv

On growth of the set $A(A+1)$ in arbitrary finite fields

July 29, 2018

89% Match
Ali Mohammadi
Number Theory

Let $\mathbb{F}_q$ be a finite field of order $q$, where $q$ is a power of a prime. For a set $A \subset \mathbb{F}_q$, under certain structural restrictions, we prove a new explicit lower bound on the size of the product set $A(A + 1)$. Our result improves on the previous best known bound due to Zhelezov and holds under more relaxed restrictions.

Find SimilarView on arXiv

On the few products, many sums problem

December 1, 2017

89% Match
Brendan Murphy, Misha Rudnev, ... , Shteinikov Yurii N.
Combinatorics

We prove new results on additive properties of finite sets $A$ with small multiplicative doubling $|AA|\leq M|A|$ in the category of real/complex sets as well as multiplicative subgroups in the prime residue field. The improvements are based on new combinatorial lemmata, which may be of independent interest. Our main results are the inequality $$ |A-A|^3|AA|^5 \gtrsim |A|^{10}, $$ over the reals, "redistributing" the exponents in the textbook Elekes sum-product inequality a...

Find SimilarView on arXiv

Breaking the 6/5 threshold for sums and products modulo a prime

June 19, 2018

89% Match
G. Shakan, I. D. Shkredov
Combinatorics
Number Theory

Let $A \subset \mathbb{F}_p$ of size at most $p^{3/5}$. We show $$|A+A| + |AA| \gtrsim |A|^{6/5 + c},$$ for $c = 4/305$. Our main tools are the cartesian product point--line incidence theorem of Stevens and de Zeeuw and the theory of higher energies developed by the second author.

Find SimilarView on arXiv

On additive shifts of multiplicative almost-subgroups in finite fields

July 20, 2015

89% Match
Dmitrii Zhelezov
Number Theory

We prove that for sets $A, B, C \subset \mathbb{F}_p$ with $|A|=|B|=|C| \leq \sqrt{p}$ and a fixed $0 \neq d \in \mathbb{F}_p$ holds $$ \max(|AB|, |(A+d)C|) \gg|A|^{1+1/26}. $$ In particular, $$ |A(A+1)| \gg |A|^{1 + 1/26} $$ and $$ \max(|AA|, |(A+1)(A+1)|) \gg |A|^{1 + 1/26}. $$ The first estimate improves the bound by Roche-Newton and Jones. In the general case of a field of order $q = p^m$ we obtain similar estimates with the exponent $1+1/559 + o...

Find SimilarView on arXiv

An improved sum-product estimate for general finite fields

January 27, 2011

89% Match
Oliver Roche-Newton
Combinatorics

This paper improves on a sum-product estimate obtained by Katz and Shen for subsets of a finite field whose order is not prime.

Find SimilarView on arXiv