July 12, 2009
Similar papers 3
November 23, 2012
Let $A$ be a finite subset of $\ffield$, the field of Laurent series in $1/t$ over a finite field $\mathbb{F}_q$. We show that for any $\epsilon>0$ there exists a constant $C$ dependent only on $\epsilon$ and $q$ such that $\max\{|A+A|,|AA|\}\geq C |A|^{6/5-\epsilon}$. In particular such a result is obtained for the rational function field $\mathbb{F}_q(t)$. Identical results are also obtained for finite subsets of the $p$-adic field $\mathbb{Q}_p$ for any prime $p$.
November 26, 2008
Let $F_p$ be the field of a prime order $p.$ For a subset $A\subset F_p$ we consider the product set $A(A+1).$ This set is an image of $A\times A$ under the polynomial mapping $f(x,y)=xy+x:F_p\times F_p\to F_p.$ In the present paper we show that if $|A|<p^{1/2},$ then $$ |A(A+1)|\ge |A|^{106/105+o(1)}.$$ If $|A|>p^{2/3},$ then we prove that $$|A(A+1)|\gg \sqrt{p |A|}$$ and show that this is the optimal in general settings bound up to the implied constant. We also estimate the...
November 23, 2020
For $p$ being a large prime number, and $A \subset \mathbb{F}_p$ we prove the following: $(i)$ If $A(A+A)$ does not cover all nonzero residues in $\mathbb{F}_p$, then $|A| < p/8 + o(p)$. $(ii)$ If $A$ is both sum-free and satisfies $A = A^*$, then $|A| < p/9 + o(p)$. $(iii)$ If $|A| \gg \frac{\log\log{p}}{\sqrt{\log{p}}}p$, then $|A + A^*| \geqslant (1 - o(1))\min(2\sqrt{|A|p}, p)$. Here the constants $1/8$, $1/9$, and $2$ are the best possible. The proof involves \em...
It was asked by E. Szemer\'edi if, for a finite set $A\subset\mathbb{Z}$, one can improve estimates for $\max\{|A+A|,|A\cdot A|\}$, under the constraint that all integers involved have a bounded number of prime factors -- that is, each $a\in A$ satisfies $\omega(a)\leq k$. In this paper, answer Szemer\'edi's question in the affirmative by showing that this maximum is of order $|A|^{\frac{5}{3}-o(1)}$ provided $k\leq (\log|A|)^{1-\epsilon}$ for some $\epsilon>0$. In fact, this...
August 19, 2020
We generalize two results about subgroups of multiplicative group of finite field of prime order. In particular, the lower bound on the cardinality of the set of values of polynomial $P(x,y)$ is obtained under the certain conditions, if variables $x$ and $y$ belong to a subgroup $G$ of the multiplicative group of the filed of residues. Also the paper contains a proof of the result that states that if a subgroup $G$ can be presented as a set of values of the polynomial $P(x,y)...
May 26, 2017
Using some new observations connected to higher energies, we obtain quantitative lower bounds on $\max\{|AB|, |A+C| \}$ and $\max\{|(A+\alpha)B|, |A+C|\}$, $\alpha \neq 0$ in the regime when the sizes of finite subsets $A,B,C$ of a field differ significantly.
May 12, 2020
Let $\mathcal R$ be a finite valuation ring of order $q^r$ with $q$ a power of an odd prime number, and $\mathcal A$ be a set in $\mathcal R$. In this paper, we improve a recent result due to Yazici (2018) on a sum-product type problem. More precisely, we will prove that 1. If $|\mathcal A|\gg q^{r-\frac{1}{3}}$, then $$\max\left\lbrace |\mathcal A+\mathcal A|, |\mathcal A^2+\mathcal A^2|\right\rbrace \gg q^{\frac{r}{2}}|\mathcal A|^{\frac{1}{2}}.$$ 2. If $q^{r-\frac{3}{8}}...
December 21, 2015
Let $F$ be a field of characteristic $p>2$ and $A\subset F$ have sufficiently small cardinality in terms of $p$. We improve the state of the art of a variety of sum-product type inequalities. In particular, we prove that $$ |AA|^2|A+A|^3 \gg |A|^6,\qquad |A(A+A)|\gg |A|^{3/2}. $$ We also prove several two-variable extractor estimates: ${\displaystyle |A(A+1)| \gg|A|^{9/8},}$ $$ |A+A^2|\gg |A|^{11/10},\; |A+A^3|\gg |A|^{29/28}, \; |A+1/A|\gg |A|^{31/30}.$$ Besides, we addres...
July 7, 2014
The aim of this note is to record a proof that the estimate $$\max{\{|A+A|,|A:A|\}}\gg{|A|^{12/11}}$$ holds for any set $A\subset{\mathbb{F}_q}$, provided that $A$ satisfies certain conditions which state that it is not too close to being a subfield. An analogous result was established in \cite{LiORN}, with the product set $A\cdot{A}$ in the place of the ratio set $A:A$. The sum-ratio estimate here beats the sum-product estimate in \cite{LiORN} by a logarithmic factor, with s...
February 5, 2016
There exists an absolute constant $C$ with the following property. Let $A \subseteq \mathbb{F}_p$ be a set in the prime order finite field with $p$ elements. Suppose that $|A| > C p^{5/8}$. The set \[ (A \pm A)(A \pm A) = \{(a_1 \pm a_2)(a_3 \pm a_4) : a_1,a_2,a_3,a_4 \in A\} \] contains at least $p/2$ elements.