March 24, 2011
Similar papers 4
June 18, 2013
Complex networks are now being studied in a wide range of disciplines across science and technology. In this paper we propose a method by which one can probe the properties of experimentally obtained network data. Rather than just measuring properties of a network inferred from data, we aim to ask how typical is that network? What properties of the observed network are typical of all such scale free networks, and which are peculiar? To do this we propose a series of methods t...
August 12, 2009
We study the tailoring of structured random graph ensembles to real networks, with the objective of generating precise and practical mathematical tools for quantifying and comparing network topologies macroscopically, beyond the level of degree statistics. Our family of ensembles can produce graphs with any prescribed degree distribution and any degree-degree correlation function, its control parameters can be calculated fully analytically, and as a result we can calculate (a...
April 2, 2006
In statistical mechanical investigations on complex networks, it is useful to employ random graphs ensembles as null models, to compare with experimental realizations. Motivated by transcription networks, we present here a simple way to generate an ensemble of random directed graphs with, asymptotically, scale-free outdegree and compact indegree. Entries in each row of the adjacency matrix are set to be zero or one according to the toss of a biased coin, with a chosen probabi...
July 14, 2005
We discuss two sampling schemes for selecting random subnets from a network: Random sampling and connectivity dependent sampling, and investigate how the degree distribution of a node in the network is affected by the two types of sampling. Here we derive a necessary and sufficient condition that guarantees that the degree distribution of the subnet and the true network belong to the same family of probability distributions. For completely random sampling of nodes we find tha...
September 23, 2015
Let $F$ be a probability distribution with support on the non-negative integers. Four methods for generating a simple undirected graph with (approximate) degree distribution $F$ are described and compared. Two methods are based on the so called configuration model with modifications ensuring a simple graph, one method is an extension of the classical Erd\H{o}s-R\'{e}nyi graph where the edge probabilities are random variables, and the last method starts with a directed random ...
December 20, 2011
Randomising networks using a naive `accept-all' edge-swap algorithm is generally biased. Building on recent results for nondirected graphs, we construct an ergodic detailed balance Markov chain with non-trivial acceptance probabilities for directed graphs, which converges to a strictly uniform measure and is based on edge swaps that conserve all in- and out-degrees. The acceptance probabilities can also be generalized to define Markov chains that target any alternative desire...
March 7, 2018
An important problem arising in the study of complex networks, for instance in community detection and motif finding, is the sampling of graphs with fixed degree sequence. The equivalent problem of generating random 0,1 matrices with fixed row and column sums is frequently used as a quantitative tool in ecology. It has however proven very challenging to design sampling algorithms that are both fast and unbiased. This article focusses on Markov chain approaches for sampling,...
August 24, 2020
In complex networks the degrees of adjacent nodes may often appear dependent -- which presents a modelling challenge. We present a working framework for studying networks with an arbitrary joint distribution for the degrees of adjacent nodes by showing that such networks are a special case of edge-coloured random graphs. We use this mapping to study bond percolation in networks with assortative mixing and show that, unlike in networks with independent degrees, the sizes of co...
September 23, 2015
In this paper we introduce extensions and modifications of the classical degree sequence graphic realization problem studied by Erd\H{o}s-Gallai and Havel-Hakimi, as well as of the corresponding connected graphic realization version. We define the joint-degree matrix graphic (resp. connected graphic) realization problem, where in addition to the degree sequence, the exact number of desired edges between vertices of different degree classes is also specified. We give necessary...
July 10, 2012
Given two distributions F and G on the nonnegative integers we propose an algorithm to construct in- and out-degree sequences from samples of i.i.d. observations from F and G, respectively, that with high probability will be graphical, that is, from which a simple directed graph can be drawn. We then analyze a directed version of the configuration model and show that, provided that F and G have finite variance, the probability of obtaining a simple graph is bounded away from ...