March 24, 2011
Similar papers 5
August 1, 2016
Random graph null models have found widespread application in diverse research communities analyzing network datasets, including social, information, and economic networks, as well as food webs, protein-protein interactions, and neuronal networks. The most popular family of random graph null models, called configuration models, are defined as uniform distributions over a space of graphs with a fixed degree sequence. Commonly, properties of an empirical network are compared to...
October 19, 2012
Degree distributions are arguably the most important property of real world networks. The classic edge configuration model or Chung-Lu model can generate an undirected graph with any desired degree distribution. This serves as a good null model to compare algorithms or perform experimental studies. Furthermore, there are scalable algorithms that implement these models and they are invaluable in the study of graphs. However, networks in the real-world are often directed, and h...
June 14, 2006
In this paper we describe the emergence of scale-free degree distributions from statistical mechanics principles. We define an energy associated to a degree sequence as the logarithm of the number of indistinguishable simple networks it is possible to draw given the degree sequence. Keeping fixed the total number of nodes and links, we show that the energy of scale-free distribution is much higher than the energy associated to the degree sequence of regular random graphs. Thi...
April 20, 2022
The approximate uniform sampling of graph realizations with a given degree sequence is an everyday task in several social science, computer science, engineering etc. projects. One approach is using Markov chains. The best available current result about the well-studied switch Markov chain is that it is rapidly mixing on P-stable degree sequences (see DOI:10.1016/j.ejc.2021.103421). The switch Markov chain does not change any degree sequence. However, there are cases where deg...
January 22, 2024
In this paper we introduce a new fast degree-preserving network rewiring algorithm. Commonly used existing algorithms require a large number of iterations, in particular in the case of large dense networks. This can especially be problematic when we wish to study ensembles of networks. In this paper we focus on degree assortative rewiring, and overcome aforementioned scalability problems by performing a rewiring of all edges at once to achieve a very high assorativity value b...
September 19, 2019
We study the expected adjacency matrix of a uniformly random multigraph with fixed degree sequence $\mathbf{d} \in \mathbb{Z}_+^n$. This matrix arises in a variety of analyses of networked data sets, including modularity-maximization and mean-field theories of spreading processes. Its structure is well-understood for large, sparse, simple graphs: the expected number of edges between nodes $i$ and $j$ is roughly $\frac{d_id_j}{\sum_\ell{d_\ell}}$. Many network data sets are ne...
September 18, 2018
This paper introduces new efficient algorithms for two problems: sampling conditional on vertex degrees in unweighted graphs, and sampling conditional on vertex strengths in weighted graphs. The algorithms can sample conditional on the presence or absence of an arbitrary number of edges. The resulting conditional distributions provide the basis for exact tests. Existing samplers based on MCMC or sequential importance sampling are generally not scalable; their efficiency degra...
April 6, 2014
We propose a random walks based model to generate complex networks. Many authors studied and developed different methods and tools to analyze complex networks by random walk processes. Just to cite a few, random walks have been adopted to perform community detection, exploration tasks and to study temporal networks. Moreover, they have been used also to generate scale-free networks. In this work, we define a random walker that plays the role of "edges-generator". In particula...
August 30, 2013
Sampling from combinatorial families can be difficult. However, complicated families can often be embedded within larger, simpler ones, for which easy sampling algorithms are known. We take advantage of such a relationship to describe a sampling algorithm for the smaller family, via a Markov chain started at a random sample of the larger family. The utility of the method is demonstrated via several examples, with particular emphasis on sampling labelled graphs with given degr...
September 19, 2002
We study assortative mixing in networks, the tendency for vertices in networks to be connected to other vertices that are like (or unlike) them in some way. We consider mixing according to discrete characteristics such as language or race in social networks and scalar characteristics such as age. As a special example of the latter we consider mixing according to vertex degree, i.e., according to the number of connections vertices have to other vertices: do gregarious people t...