September 28, 2011
Similar papers 3
July 27, 2018
In this article the problem of reconstructing the pattern of connection between agents from partial empirical data in a macro-economic model is addressed, given a set of behavioral equations. This systemic point of view puts the focus on distributional and network effects, rather than time-dependence. Using the theory of complex networks we compare several models to reconstruct both the topology and the flows of money of the different types of monetary transactions, while imp...
July 8, 2013
Network topology plays a key role in many phenomena, from the spreading of diseases to that of financial crises. Whenever the whole structure of a network is unknown, one must resort to reconstruction methods that identify the least biased ensemble of networks consistent with the partial information available. A challenging case, frequently encountered due to privacy issues in the analysis of interbank flows and Big Data, is when there is only local (node-specific) aggregate ...
May 26, 2023
The structure of many financial networks is protected by privacy and has to be inferred from aggregate observables. Here we consider one of the most successful network reconstruction methods, producing random graphs with desired link density and where the observed constraints (related to the market size of each node) are replicated as averages over the graph ensemble, but not in individual realizations. We show that there is a minimum critical link density below which the met...
February 11, 2014
The 2008 financial crisis illustrated the need for a thorough, functional understanding of systemic risk in strongly interconnected financial structures. Dynamic processes on complex networks being intrinsically difficult, most recent studies of this problem have relied on numerical simulations. Here we report analytical results in a network model of interbank lending based on directly relevant financial parameters, such as interest rates and leverage ratios. Using a mean-fie...
December 24, 2011
Propagation of balance-sheet or cash-flow insolvency across financial institutions may be modeled as a cascade process on a network representing their mutual exposures. We derive rigorous asymptotic results for the magnitude of contagion in a large financial network and give an analytical expression for the asymptotic fraction of defaults, in terms of network characteristics. Our results extend previous studies on contagion in random graphs to inhomogeneous directed graphs wi...
March 9, 2021
The field of Financial Networks is a paramount example of the novel applications of Statistical Physics that have made possible by the present data revolution. As the total value of the global financial market has vastly outgrown the value of the real economy, financial institutions on this planet have created a web of interactions whose size and topology calls for a quantitative analysis by means of Complex Networks. Financial Networks are not only a playground for the use o...
March 13, 2016
This paper investigates two mechanisms of financial contagion that are, firstly, the correlated exposure of banks to the same source of risk, and secondly the direct exposure of banks in the interbank market. It will consider a random network of banks which are connected through the inter-bank market and will discuss the desirable level of banks exposure to the same sources of risk, that is investment in similar portfolios, for different levels of network connectivity when pe...
October 4, 2016
The interconnectedness of financial institutions affects instability and credit crises. To quantify systemic risk we introduce here the PD model, a dynamic model that combines credit risk techniques with a contagion mechanism on the network of exposures among banks. A potential loss distribution is obtained through a multi-period Monte Carlo simulation that considers the probability of default (PD) of the banks and their tendency of defaulting in the same time interval. A con...
April 22, 2024
In this paper, we introduce a novel centrality measure to evaluate shock propagation on financial networks capturing a notion of contagion and systemic risk contributions. In comparison to many popular centrality metrics (e.g., eigenvector centrality) which provide only a relative centrality between nodes, our proposed measure is in an absolute scale permitting comparisons of contagion risk over time. In addition, we provide a statistical validation method when the network is...
September 18, 2012
The events of the last few years revealed an acute need for tools to systematically model and analyze large financial networks. Many applications of such tools include the forecasting of systemic failures and analyzing probable effects of economic policy decisions. We consider optimizing the amount and structure of a bailout in a borrower-lender network: Given a fixed amount of cash to be injected into the system, how should it be distributed among the nodes in order to achie...