September 28, 2011
Similar papers 4
March 31, 2017
The global financial crisis in 2007-2009 demonstrated that systemic risk can spread all over the world through a complex web of financial linkages, yet we still lack fundamental knowledge about the evolution of the financial web. In particular, interbank credit networks shape the core of the financial system, in which a time-varying interconnected risk emerges from a massive number of temporal transactions between banks. The current lack of understanding of the mechanics of i...
December 22, 2020
We provide an overview of the relationship between financial networks and systemic risk. We present a taxonomy of different types of systemic risk, differentiating between direct externalities between financial organizations (e.g., defaults, correlated portfolios and firesales), and perceptions and feedback effects (e.g., bank runs, credit freezes). We also discuss optimal regulation and bailouts, measurements of systemic risk and financial centrality, choices by banks' regar...
February 17, 2024
Networks of financial exposures are the key propagators of risk and distress among banks, but their empirical structure is not publicly available because of confidentiality. This limitation has triggered the development of methods of network reconstruction from partial, aggregate information. Unfortunately, even the best methods available fail in replicating the number of directed cycles, which on the other hand play a crucial role in determining graph spectra and hence the d...
October 17, 2012
As economic entities become increasingly interconnected, a shock in a financial network can provoke significant cascading failures throughout the system. To study the systemic risk of financial systems, we create a bi-partite banking network model composed of banks and bank assets and propose a cascading failure model to describe the risk propagation process during crises. We empirically test the model with 2007 US commercial banks balance sheet data and compare the model pre...
February 14, 2012
The importance of adequately modeling credit risk has once again been highlighted in the recent financial crisis. Defaults tend to cluster around times of economic stress due to poor macro-economic conditions, {\em but also} by directly triggering each other through contagion. Although credit default swaps have radically altered the dynamics of contagion for more than a decade, models quantifying their impact on systemic risk are still missing. Here, we examine contagion thro...
September 28, 2012
We present a novel method to reconstruct complex network from partial information. We assume to know the links only for a subset of the nodes and to know some non-topological quantity (fitness) characterising every node. The missing links are generated on the basis of the latter quan- tity according to a fitness model calibrated on the subset of nodes for which links are known. We measure the quality of the reconstruction of several topological properties, such as the network...
September 22, 2014
A fundamental problem in studying and modeling economic and financial systems is represented by privacy issues, which put severe limitations on the amount of accessible information. Here we introduce a novel, highly nontrivial method to reconstruct the structural properties of complex weighted networks of this kind using only partial information: the total number of nodes and links, and the values of the strength for all nodes. The latter are used as fitness to estimate the u...
September 9, 2014
We investigate the credit risk model defined in Hatchett & K\"{u}hn under more general assumptions, in particular using a general degree distribution for sparse graphs. Expanding upon earlier results, we show that the model is exactly solvable in the $N\rightarrow \infty$ limit and demonstrate that the exact solution is described by the message-passing approach outlined by Karrer and Newman, generalized to include heterogeneous agents and couplings. We provide comparisons wit...
December 14, 2015
We consider a dynamical model of distress propagation on complex networks, which we apply to the study of financial contagion in networks of banks connected to each other by direct exposures. The model that we consider is an extension of the DebtRank algorithm, recently introduced in the literature. The mechanics of distress propagation is very simple: When a bank suffers a loss, distress propagates to its creditors, who in turn suffer losses, and so on. The original DebtRank...
November 17, 2019
As impressively shown by the financial crisis in 2007/08, contagion effects in financial networks harbor a great threat for the stability of the entire system. Without sufficient capital requirements for banks and other financial institutions, shocks that are locally confined at first can spread through the entire system and be significantly amplified by various contagion channels. The aim of this thesis is thus to investigate in detail two selected contagion channels of this...