December 18, 2023
We propose a novel integrated structure for single photon generation at room temperature based on a molecular optomechanics system in a hybrid photonic-plasmonic cavity. The proposed structure comprises a single molecule within a plasmonic cavity, coupled to a 2D photonic crystal resonator. In this paper, we theoretically identify the ability of the scheme through calculation second order correlation function g^2 (0) for four different coupling regimes. We demonstrate the qua...
December 13, 2021
Single photons constitute a main platform in quantum science and technology: they carry quantum information over extended distances in the future quantum internet and can be manipulated in advanced photonic circuits enabling scalable photonic quantum computing. The main challenge in quantum photonics is how to generate advanced entangled resource states and efficient light-matter interfaces. Here we utilize the efficient and coherent coupling of a single quantum emitter to a ...
July 21, 2016
We propose an efficient light-matter interface at optical frequencies between a single photon and a superconducting qubit. The desired interface is based on a hybrid architecture composed of an organic molecule embedded inside an optical waveguide and electrically coupled to a superconducting qubit placed near the outside surface of the waveguide. We show that high fidelity, photon-mediated, entanglement between distant superconducting qubits can be achieved with incident pul...
July 10, 2014
We present a new scheme for performing optical spectroscopy on single molecules. A glass capillary with a diameter of 600 nm filled with an organic crystal tightly guides the excitation light and provides a maximum spontaneous emission coupling factor ($\beta$) of 18% for the dye molecules doped in the organic crystal. Combination of extinction, fluorescence excitation and resonance fluorescence spectroscopy with microscopy provides high-resolution spatio-spectral access to a...
May 25, 2020
The local interaction of charges and light in organic solids is the basis of distinct and fundamental effects. We here observe, at the single molecule scale, how a focused laser beam can locally shift by hundreds-time their natural linewidth and in a persistent way the transition frequency of organic chromophores, cooled at liquid helium temperatures in different host matrices. Supported by quantum chemistry calculations, the results are interpreted as effects of a photo-ioni...
October 7, 2023
The fundamental processes of absorption, stimulated and spontaneous emission, and elastic as well as inelastic scattering involving light and atoms, molecules, and nano-particles have been studied for decades using both classical and quantum theories. While providing an overview of the subject, this paper presents a streamlined approach to studying atom-photon interactions in the context of modern quantum optics in the hope of providing guidance for applications in the genera...
February 20, 2017
While experiments with one or two quantum emitters have become routine in various laboratories, scalable platforms for efficient optical coupling of many quantum systems remain elusive. To address this issue, we report on chip-based systems made of one-dimensional subwavelength dielectric waveguides (nanoguides) and polycyclic aromatic hydrocarbon molecules. After discussing the design and fabrication requirements, we present data on coherent linear and nonlinear spectroscopy...
December 22, 2022
Quantum light is increasingly recognized as a promising resource for developing optical measurement techniques. Particular attention has been paid to enhancing the precision of the measurements beyond classical techniques by using nonclassical correlations between quantum entangled photons. Recent advances in quantum optics technology have made it possible to manipulate the spectral and temporal properties of entangled photons, and the photon correlations can facilitate the e...
January 18, 2022
Scalability and miniaturization are hallmarks of solid-state platforms for photonic quantum technologies. Still a main challenge is two-photon interference from distinct emitters on chip. This requires local tuning, integration and novel approaches to understand and tame noise processes. A promising platform is that of molecular single photon sources. Thousands of molecules with optically tuneable emission frequency can be easily isolated in solid matrices and triggered with ...
November 3, 2019
Non-equilibrium photon correlations of coherently excited single quantum systems can reveal their internal quantum dynamics and provide spectroscopic access. Here we propose and discuss the fundamentals of a coherent photon coincidence spectroscopy based on the application of laser pulses with variable delay and the detection of an time-averaged two-photon coincidence rate. For demonstration, two simple but important cases, i.e., an exciton - biexciton in a quantum dot and tw...