October 18, 2007
We demonstrate two solid-state sources of indistinguishable single photons. High resolution laser spectroscopy and optical microscopy were combined at T = 1.4 K to identify individual molecules in two independent microscopes. The Stark effect was exploited to shift the transition frequency of a given molecule and thus obtain single photon sources with perfect spectral overlap. Our experimental arrangement sets the ground for the realization of various quantum interference and...
August 27, 2010
We investigate a nonlinear localization microscopy method based on Rabi oscillations of single emitters. We demonstrate the fundamental working principle of this new technique using a cryogenic far-field experiment in which subwavelength features smaller than $\lambda$/10 are obtained. Using Monte Carlo simulations, we show the superior localization accuracy of this method under realistic conditions and a potential for higher acquisition speed or a lower number of required ph...
January 8, 2022
In the last decade, much theoretical research has focused on studying the strong coupling between organic molecules (or quantum emitters, in general) and light modes. The description and prediction of polaritonic phenomena emerging in this light-matter interaction regime have proven to be difficult tasks. The challenge originates from the enormous number of degrees of freedom that need to be taken into account, both in the organic molecules and in their photonic environment. ...
July 7, 2011
We realized the most fundamental quantum optical experiment to prove the non-classical character of light: Only a single quantum emitter and a single superconducting nanowire detector were used. A particular appeal of our experiment is its elegance and simplicity. Yet its results unambiguously enforce a quantum theory for light. Previous experiments relied on more complex setups, such as the Hanbury-Brown-Twiss configuration, where a beam splitter directs light to two photode...
June 19, 2004
We report the observation of ultralong coherence times in the purely electronic zero-phonon line emission of single terrylenediimide molecules at 1.4 K. Vibronic excitation and spectrally resolved detection with a scanning Fabry-Perot spectrum analyzer were used to measure a linewidth of 65 MHz. This is within a factor of 1.6 of the transform limit. It therefore indicates that single molecule emission may be suited for applications in linear optics quantum computation. Additi...
November 23, 2021
Two-photon excitation spectroscopy is a nonlinear technique that has gained rapidly in interest and significance for studying the complex energy-level structure and transition probabilities of materials. While the conventional spectroscopy based on tunable classical light has been long established, quantum light provides an alternative way towards excitation spectroscopy with potential advantages in temporal and spectral resolution, as well as reduced photon fluxes. By using ...
March 16, 2016
Information processing with light is ubiquitous, from communication, metrology and imaging to computing. When we consider light as a quantum mechanical object, new ways of information processing become possible. In this review I give an overview how quantum information processing can be implemented with single photons, and what hurdles still need to be overcome to implement the various applications in practice. I will place special emphasis on the quantum mechanical propertie...
February 23, 2009
In this paper, single-molecule spectroscopy experiments based on continuous laser excitation are characterized through an open quantum system approach. The evolution of the fluorophore system follows from an effective Hamiltonian microscopic dynamic where its characteristic parameters, i.e., its electric dipole, transition frequency, and Rabi frequency, as well as the quantization of the background electromagnetic field and their mutual interaction, are defined in an extended...
November 16, 2009
We demonstrate strong coupling of single photons emitted by individual molecules at cryogenic and ambient conditions to individual nanoparticles. We provide images obtained both in transmission and reflection, where an efficiency greater than 55% was achieved in converting incident narrow-band photons to plasmon-polaritons (plasmons) of a silver nanoparticle. Our work paves the way to spectroscopy and microscopy of nano-objects with sub-shot noise beams of light and to trigge...
December 9, 2020
While two-photon absorption (TPA) and other forms of nonlinear interactions of molecules with isolated time-frequency-entangled photon pairs (EPP) have been predicted to display a variety of fascinating effects, their potential use in practical quantum-enhanced molecular spectroscopy requires close examination. This paper presents a detailed theoretical study of quantum-enhanced TPA by both photon-number correlations and spectral correlations, including an account of the dele...