December 27, 2011
Similar papers 3
October 18, 2011
Community detection is a fundamental problem in network analysis, with applications in many diverse areas. The stochastic block model is a common tool for model-based community detection, and asymptotic tools for checking consistency of community detection under the block model have been recently developed. However, the block model is limited by its assumption that all nodes within a community are stochastically equivalent, and provides a poor fit to networks with hubs or hig...
July 10, 2015
Many statistical methods for network data parameterize the edge-probability by attributing latent traits to the vertices such as block structure and assume exchangeability in the sense of the Aldous-Hoover representation theorem. Empirical studies of networks indicate that many real-world networks have a power-law distribution of the vertices which in turn implies the number of edges scale slower than quadratically in the number of vertices. These assumptions are fundamentall...
June 4, 2014
Sampling random graphs with given properties is a key step in the analysis of networks, as random ensembles represent basic null models required to identify patterns such as communities and motifs. An important requirement is that the sampling process is unbiased and efficient. The main approaches are microcanonical, i.e. they sample graphs that match the enforced constraints exactly. Unfortunately, when applied to strongly heterogeneous networks (like most real-world example...
December 6, 2023
Detecting communities in high-dimensional graphs can be achieved by applying random matrix theory where the adjacency matrix of the graph is modeled by a Stochastic Block Model (SBM). However, the SBM makes an unrealistic assumption that the edge probabilities are homogeneous within communities, i.e., the edges occur with the same probabilities. The Degree-Corrected SBM is a generalization of the SBM that allows these edge probabilities to be different, but existing results f...
June 25, 2021
Graphs are widely used for describing systems made up of many interacting components and for understanding the structure of their interactions. Various statistical models exist, which describe this structure as the result of a combination of constraints and randomness. %Model selection techniques need to automatically identify the best model, and the best set of parameters for a given graph. To do so, most authors rely on the minimum description length paradigm, and apply it ...
May 31, 2012
The stochastic block model is a powerful tool for inferring community structure from network topology. However, it predicts a Poisson degree distribution within each community, while most real-world networks have a heavy-tailed degree distribution. The degree-corrected block model can accommodate arbitrary degree distributions within communities. But since it takes the vertex degrees as parameters rather than generating them, it cannot use them to help it classify the vertice...
November 25, 2021
With the rapid expansion of graphs and networks and the growing magnitude of data from all areas of science, effective treatment and compression schemes of context-dependent data is extremely desirable. A particularly interesting direction is to compress the data while keeping the "structural information" only and ignoring the concrete labelings. Under this direction, Choi and Szpankowski introduced the structures (unlabeled graphs) which allowed them to compute the structura...
February 7, 2020
There exist various types of network block models such as the Stochastic Block Model (SBM), the Degree Corrected Block Model (DCBM), and the Popularity Adjusted Block Model (PABM). While this leads to a variety of choices, the block models do not have a nested structure. In addition, there is a substantial jump in the number of parameters from the DCBM to the PABM. The objective of this paper is formulation of a hierarchy of block model which does not rely on arbitrary identi...
May 19, 2020
Mixture models are probabilistic models aimed at uncovering and representing latent subgroups within a population. In the realm of network data analysis, the latent subgroups of nodes are typically identified by their connectivity behaviour, with nodes behaving similarly belonging to the same community. In this context, mixture modelling is pursued through stochastic blockmodelling. We consider stochastic blockmodels and some of their variants and extensions from a mixture mo...
February 24, 2016
Analysis of the topology of a graph, regular or bipartite one, can be done by clustering for regular ones or co-clustering for bipartite ones. The Stochastic Block Model and the Latent Block Model are two models, which are very similar for respectively regular and bipartite graphs, based on probabilistic models. Initially developed for binary graphs, these models have been extended to valued networks with optional covariates on the edges. This paper present a implementation o...