December 27, 2011
Similar papers 4
February 17, 2010
Why are most empirical networks, with the prominent exception of social ones, generically degree-degree anticorrelated, i.e. disassortative? With a view to answering this long-standing question, we define a general class of degree-degree correlated networks and obtain the associated Shannon entropy as a function of parameters. It turns out that the maximum entropy does not typically correspond to uncorrelated networks, but to either assortative (correlated) or disassortative ...
September 4, 2018
We propose to estimate the number of communities in degree-corrected stochastic block models based on a pseudo likelihood ratio statistic. To this end, we introduce a method that combines spectral clustering with binary segmentation. This approach guarantees an upper bound for the pseudo likelihood ratio statistic when the model is over-fitted. We also derive its limiting distribution when the model is under-fitted. Based on these properties, we establish the consistency of o...
October 29, 2011
The Stochastic Block Model (Holland et al., 1983) is a mixture model for heterogeneous network data. Unlike the usual statistical framework, new nodes give additional information about the previous ones in this model. Thereby the distribution of the degrees concentrates in points conditionally on the node class. We show under a mild assumption that classification, estimation and model selection can actually be achieved with no more than the empirical degree data. We provide a...
January 26, 2021
The Degree-Corrected Stochastic Block Model (DCSBM) is a popular model to generate random graphs with community structure given an expected degree sequence. The standard approach of community detection based on the DCSBM is to search for the model parameters that are the most likely to have produced the observed network data through maximum likelihood estimation (MLE). Current techniques for the MLE problem are heuristics, and therefore do not guarantee convergence to the opt...
February 7, 2023
The Degree Corrected Stochastic Block Model (DCSBM) was introduced by \cite{karrer2011stochastic} as a generalization of the stochastic block model in which vertices of the same community are allowed to have distinct degree distributions. On the modelling side, this variability makes the DCSBM more suitable for real life complex networks. On the statistical side, it is more challenging due to the large number of parameters when dealing with community detection. In this paper ...
February 18, 2014
We present a selective review on probabilistic modeling of heterogeneity in random graphs. We focus on latent space models and more particularly on stochastic block models and their extensions that have undergone major developments in the last five years.
November 12, 2017
For a random graph subject to a topological constraint, the microcanonical ensemble requires the constraint to be met by every realisation of the graph (`hard constraint'), while the canonical ensemble requires the constraint to be met only on average (`soft constraint'). It is known that breaking of ensemble equivalence may occur when the size of the graph tends to infinity, signalled by a non-zero specific relative entropy of the two ensembles. In this paper we analyse a fo...
November 14, 2017
Network clustering reveals the organization of a network or corresponding complex system with elements represented as vertices and interactions as edges in a (directed, weighted) graph. Although the notion of clustering can be somewhat loose, network clusters or groups are generally considered as nodes with enriched interactions and edges sharing common patterns. Statistical inference often treats groups as latent variables, with observed networks generated from latent group ...
June 10, 2002
Using a maximum entropy principle to assign a statistical weight to any graph, we introduce a model of random graphs with arbitrary degree distribution in the framework of standard statistical mechanics. We compute the free energy and the distribution of connected components. We determine the size of the percolation cluster above the percolation threshold. The conditional degree distribution on the percolation cluster is also given. We briefly present the analogous discussion...
July 24, 2007
We introduce and study a class of exchangeable random graph ensembles. They can be used as statistical null models for empirical networks, and as a tool for theoretical investigations. We provide general theorems that carachterize the degree distribution of the ensemble graphs, together with some features that are important for applications, such as subgraph distributions and kernel of the adjacency matrix. These results are used to compare to other models of simple and compl...