September 7, 2007
We propose a synthetical weights' dynamic mechanism for weighted networks which takes into account the influences of strengths of nodes, weights of links and incoming new vertices. Strength/Weight preferential strategies are used in these weights' dynamic mechanisms, which depict the evolving strategies of many real-world networks. We give insight analysis to the synthetical weights' dynamic mechanism and study how individual weights' dynamic strategies interact and cooperate...
February 12, 2002
The random graph of Erdos and Renyi is one of the oldest and best studied models of a network, and possesses the considerable advantage of being exactly solvable for many of its average properties. However, as a model of real-world networks such as the Internet, social networks or biological networks it leaves a lot to be desired. In particular, it differs from real networks in two crucial ways: it lacks network clustering or transitivity, and it has an unrealistic Poissonian...
April 11, 2020
We propose algorithms for construction and random generation of hypergraphs without loops and with prescribed degree and dimension sequences. The objective is to provide a starting point for as well as an alternative to Markov chain Monte Carlo approaches. Our algorithms leverage the transposition of properties and algorithms devised for matrices constituted of zeros and ones with prescribed row- and column-sums to hypergraphs. The construction algorithm extends the applicabi...
September 8, 2014
The theory of random graphs goes back to the late 1950s when Paul Erd\H{o}s and Alfr\'ed R\'enyi introduced the Erd\H{o}s-R\'enyi random graph. Since then many models have been developed, and the study of random graph models has become popular for real-life network modelling such as social networks and financial networks. The aim of this overview is to review relevant random graph models for real-life network modelling. Therefore, we analyse their properties in terms of styli...
October 17, 2007
Random networks are widely used to model complex networks and research their properties. In order to get a good approximation of complex networks encountered in various disciplines of science, the ability to tune various statistical properties of random networks is very important. In this manuscript we present an algorithm which is able to construct arbitrarily degree-degree correlated networks with adjustable degree-dependent clustering. We verify the algorithm by using empi...
October 30, 2012
Markov chains are convenient means of generating realizations of networks with a given (joint or otherwise) degree distribution, since they simply require a procedure for rewiring edges. The major challenge is to find the right number of steps to run such a chain, so that we generate truly independent samples. Theoretical bounds for mixing times of these Markov chains are too large to be practically useful. Practitioners have no useful guide for choosing the length, and tend ...
September 8, 2020
We describe a new method for the random sampling of connected networks with a specified degree sequence. We consider both the case of simple graphs and that of loopless multigraphs. The constraints of fixed degrees and of connectedness are two of the most commonly needed ones when constructing null models for the practical analysis of physical or biological networks. Yet handling these constraints, let alone combining them, is non-trivial. Our method builds on a recently intr...
March 13, 2018
Functional complex networks have meant a pivotal change in the way we understand complex systems, being the most outstanding one the human brain. These networks have classically been reconstructed using a frequentist approach that, while simple, completely disregards the uncertainty that derives from data finiteness. We here provide an alternative solution based on Bayesian inference, with link weights treated as random variables described by probability distributions, from w...
September 29, 2003
We study a recent model of random networks based on the presence of an intrinsic character of the vertices called fitness. The vertices fitnesses are drawn from a given probability distribution density. The edges between pair of vertices are drawn according to a linking probability function depending on the fitnesses of the two vertices involved. We study here different choices for the probability distribution densities and the linking functions. We find that, irrespective of...
August 26, 2004
We review the main tools which allow for the statistical characterization of weighted networks. We then present two case studies, the airline connection network and the scientific collaboration network, which are representative of critical infrastructures and social systems, respectively. The main empirical results are (i) the broad distributions of various quantities and (ii) the existence of weight-topology correlations. These measurements show that weights are relevant and...