July 11, 2017
A model of bit-strings, that uses the technique of multi-spin coding, was previously used to study the time evolution of B-cell clone repertoire, in a paper by Lagreca, Almeida and Santos. In this work we extend that simplified model to include independently the role of the populations of antibodies, in the control of the immune response, producing mechanisms of differentiation and regulation in a more complete way. Although the antibodies have the same molecular shape of the...
November 26, 2007
What is a complex network? How do we characterize complex networks? Which systems can be studied from a network approach? In this text, we motivate the use of complex networks to study and understand a broad panoply of systems, ranging from physics and biology to economy and sociology. Using basic tools from statistical physics, we will characterize the main types of networks found in nature. Moreover, the most recent trends in network research will be briefly discussed.
May 14, 2015
We analyse a minimal model for the primary response in the adaptive immune system comprising three different players: antigens, T and B cells. We assume B-T interactions to be diluted and sampled locally from heterogeneous degree distributions, which mimic B cells receptors' promiscuity. We derive dynamical equations for the order parameters quantifying the B cells activation and study the nature and stability of the stationary solutions using linear stability analysis and Mo...
December 10, 2012
The ability of the adaptive immune system to discriminate between self and non-self mainly stems from the ontogenic clonal-deletion of lymphocytes expressing strong binding affinity with self-peptides. However, some self-directed lymphocytes may evade selection and still be harmless due to a mechanism called clonal anergy. As for B lymphocytes, two major explanations for anergy developed over three decades: according to "Varela theory", it stems from a proper orchestration of...
April 29, 2011
Introduction to the Special Issue on Complex Networks, Artificial Life journal.
March 4, 2016
We study the Langevin dynamics of the adaptive immune system, modelled by a lymphocyte network in which the B cells are interacting with the T cells and antigen. We assume that B clones and T clones are evolving in different thermal noise environments and on different timescales. We derive stationary distributions and use statistical mechanics to study clonal expansion of B clones in this model when the B and T clone sizes are assumed to be the slow and fast variables respect...
August 15, 2005
Recently, motivated by the pioneer works that reveal the small-world effect and scale-free property of various real-life networks, many scientists devote themselves into studying complex networks. One of the ultimate goals is to understand how the topological structures of networks affect the dynamics upon them. In this paper, we give a brief review on the studies of epidemic dynamics on complex networks, including the description of classical epidemic models, the epidemic sp...
December 9, 2011
We introduce a class of weighted graphs whose properties are meant to mimic the topological features of idiotypic networks, namely the interaction networks involving the B-core of the immune system. Each node is endowed with a bit-string representing the idiotypic specificity of the corresponding B cell and a proper distance between any couple of bit-strings provides the coupling strength between the two nodes. We show that a biased distribution of the entries in bit-strings ...
May 24, 2006
It has been shown that many complex networks shared distinctive features, which differ in many ways from the random and the regular networks. Although these features capture important characteristics of complex networks, their applicability depends on the type of networks. To unravel ubiquitous characteristics that complex networks may have in common, we adopt the clustering coefficient as the probability measure, and present a systematic analysis of various types of complex ...
May 9, 2013
The similarity between neural and immune networks has been known for decades, but so far we did not understand the mechanism that allows the immune system, unlike associative neural networks, to recall and execute a large number of memorized defense strategies {\em in parallel}. The explanation turns out to lie in the network topology. Neurons interact typically with a large number of other neurons, whereas interactions among lymphocytes in immune networks are very specific, ...