April 18, 2012
In this paper we study in complete generality the family of two-state, deterministic, monotone, local, homogeneous cellular automata in $\mathbb{Z}^d$ with random initial configurations. Formally, we are given a set $\mathcal{U}=\{X_1,\dots,X_m\}$ of finite subsets of $\mathbb{Z}^d\setminus\{\mathbf{0}\}$, and an initial set $A_0\subset\mathbb{Z}^d$ of `infected' sites, which we take to be random according to the product measure with density $p$. At time $t\in\mathbb{N}$, the set of infected sites $A_t$ is the union of $A_{t-1}$ and the set of all $x\in\mathbb{Z}^d$ such that $x+X\in A_{t-1}$ for some $X\in\mathcal{U}$. Our model may alternatively be thought of as bootstrap percolation on $\mathbb{Z}^d$ with arbitrary update rules, and for this reason we call it $\mathcal{U}$-bootstrap percolation. In two dimensions, we give a classification of $\mathcal{U}$-bootstrap percolation models into three classes -- supercritical, critical and subcritical -- and we prove results about the phase transitions of all models belonging to the first two of these classes. More precisely, we show that the critical probability for percolation on $(\mathbb{Z}/n\mathbb{Z})^2$ is $(\log n)^{-\Theta(1)}$ for all models in the critical class, and that it is $n^{-\Theta(1)}$ for all models in the supercritical class. The results in this paper are the first of any kind on bootstrap percolation considered in this level of generality, and in particular they are the first that make no assumptions of symmetry. It is the hope of the authors that this work will initiate a new, unified theory of bootstrap percolation on $\mathbb{Z}^d$.
Similar papers 1
March 3, 2022
We study monotone cellular automata (also known as $\mathcal{U}$-bootstrap percolation) in $\mathbb{Z}^d$ with random initial configurations. Confirming a conjecture of Balister, Bollob\'as, Przykucki and Smith, who proved the corresponding result in two dimensions, we show that the critical probability is non-zero for all subcritical models.
March 25, 2022
In this paper we study monotone cellular automata in $d$ dimensions. We develop a general method for bounding the growth of the infected set when the initial configuration is chosen randomly, and then use this method to prove a lower bound on the critical probability for percolation that is sharp up to a constant factor in the exponent for every 'critical' model. This is one of three papers that together confirm the Universality Conjecture of Bollob\'as, Duminil-Copin, Morris...
November 22, 2013
We prove that there exist natural generalizations of the classical bootstrap percolation model on $\mathbb{Z}^2$ that have non-trivial critical probabilities, and moreover we characterize all homogeneous, local, monotone models with this property. Van Enter (in the case $d=r=2$) and Schonmann (for all $d \geq r \geq 2$) proved that $r$-neighbour bootstrap percolation models have trivial critical probabilities on $\mathbb{Z}^d$ for every choice of the parameters $d \geq r \g...
June 25, 2014
We study the class of monotone, two-state, deterministic cellular automata, in which sites are activated (or 'infected') by certain configurations of nearby infected sites. These models have close connections to statistical physics, and several specific examples have been extensively studied in recent years by both mathematicians and physicists. This general setting was first studied only recently, however, by Bollob\'as, Smith and Uzzell, who showed that the family of all su...
June 29, 2018
Bootstrap percolation is a wide class of monotone cellular automata with random initial state. In this work we develop tools for studying in full generality one of the three `universality' classes of bootstrap percolation models in two dimensions, termed subcritical. We introduce the new notion of `critical densities' serving the role of `difficulties' for critical models, but adapted to subcritical ones. We characterise the critical probability in terms of these quantities a...
October 1, 2021
We study qualitative properties of two-dimensional freezing cellular automata with a binary state set initialized on a random configuration. If the automaton is also monotone, the setting is equivalent to bootstrap percolation. We explore the extent to which monotonicity constrains the possible asymptotic dynamics by proving two results that do not hold in the subclass of monotone automata. First, it is undecidable whether the automaton almost surely fills the space when init...
December 25, 2013
This paper considers a class of probabilistic cellular automata undergoing a phase transition with an absorbing state. Denoting by ${\mathcal{U}}(x)$ the neighbourhood of site $x$, the transition probability is $T(\eta_x = 1 | \eta_{{\mathcal{U}}(x)}) = 0$ if $\eta_{{\mathcal{U}}(x)}= \mathbf{0}$ or $p$ otherwise, $\forall x \in \mathbb{Z}$. For any $\mathcal{U}$ there exists a non-trivial critical probability $p_c({\mathcal{U}})$ that separates a phase with an absorbing stat...
October 21, 2004
Consider a cellular automaton with state space $\{0,1 \}^{{\mathbb Z}^2}$ where the initial configuration $\omega_0$ is chosen according to a Bernoulli product measure, 1's are stable, and 0's become 1's if they are surrounded by at least three neighboring 1's. In this paper we show that the configuration $\omega_n$ at time n converges exponentially fast to a final configuration $\bar\omega$, and that the limiting measure corresponding to $\bar\omega$ is in the universality c...
December 3, 2021
We establish new connections between percolation, bootstrap percolation, probabilistic cellular automata and deterministic ones. Surprisingly, by juggling with these in various directions, we effortlessly obtain a number of new results in these fields. In particular, we prove the sharpness of the phase transition of attractive absorbing probabilistic cellular automata, a class of bootstrap percolation models and kinetically constrained models. We further show how to recover a...
July 29, 2015
In this paper a random graph model $G_{\mathbb{Z}^2_N,p_d}$ is introduced, which is a combination of fixed torus grid edges in $(\mathbb{Z}/N \mathbb{Z})^2$ and some additional random ones. The random edges are called long, and the probability of having a long edge between vertices $u,v\in(\mathbb{Z}/N \mathbb{Z})^2$ with graph distance $d$ on the torus grid is $p_d=c/Nd$, where $c$ is some constant. We show that, {\em whp}, the diameter $D(G_{\mathbb{Z}^2_N,p_d})=\Theta (\lo...