November 22, 2013
We prove that there exist natural generalizations of the classical bootstrap percolation model on $\mathbb{Z}^2$ that have non-trivial critical probabilities, and moreover we characterize all homogeneous, local, monotone models with this property. Van Enter (in the case $d=r=2$) and Schonmann (for all $d \geq r \geq 2$) proved that $r$-neighbour bootstrap percolation models have trivial critical probabilities on $\mathbb{Z}^d$ for every choice of the parameters $d \geq r \geq 2$: that is, an initial set of density $p$ almost surely percolates $\mathbb{Z}^d$ for every $p>0$. These results effectively ended the study of bootstrap percolation on infinite lattices. Recently Bollob\'as, Smith and Uzzell introduced a broad class of percolation models called $\mathcal{U}$-bootstrap percolation, which includes $r$-neighbour bootstrap percolation as a special case. They divided two-dimensional $\mathcal{U}$-bootstrap percolation models into three classes -- subcritical, critical and supercritical -- and they proved that, like classical 2-neighbour bootstrap percolation, critical and supercritical $\mathcal{U}$-bootstrap percolation models have trivial critical probabilities on $\mathbb{Z}^2$. They left open the question as to what happens in the case of subcritical families. In this paper we answer that question: we show that every subcritical $\mathcal{U}$-bootstrap percolation model has a non-trivial critical probability on $\mathbb{Z}^2$. This is new except for a certain `degenerate' subclass of symmetric models that can be coupled from below with oriented site percolation. Our results re-open the study of critical probabilities in bootstrap percolation on infinite lattices, and they allow one to ask many questions of subcritical bootstrap percolation models that are typically asked of site or bond percolation.
Similar papers 1
June 29, 2018
Bootstrap percolation is a wide class of monotone cellular automata with random initial state. In this work we develop tools for studying in full generality one of the three `universality' classes of bootstrap percolation models in two dimensions, termed subcritical. We introduce the new notion of `critical densities' serving the role of `difficulties' for critical models, but adapted to subcritical ones. We characterise the critical probability in terms of these quantities a...
April 18, 2012
In this paper we study in complete generality the family of two-state, deterministic, monotone, local, homogeneous cellular automata in $\mathbb{Z}^d$ with random initial configurations. Formally, we are given a set $\mathcal{U}=\{X_1,\dots,X_m\}$ of finite subsets of $\mathbb{Z}^d\setminus\{\mathbf{0}\}$, and an initial set $A_0\subset\mathbb{Z}^d$ of `infected' sites, which we take to be random according to the product measure with density $p$. At time $t\in\mathbb{N}$, the...
March 3, 2022
We study monotone cellular automata (also known as $\mathcal{U}$-bootstrap percolation) in $\mathbb{Z}^d$ with random initial configurations. Confirming a conjecture of Balister, Bollob\'as, Przykucki and Smith, who proved the corresponding result in two dimensions, we show that the critical probability is non-zero for all subcritical models.
We study the class of monotone, two-state, deterministic cellular automata, in which sites are activated (or 'infected') by certain configurations of nearby infected sites. These models have close connections to statistical physics, and several specific examples have been extensively studied in recent years by both mathematicians and physicists. This general setting was first studied only recently, however, by Bollob\'as, Smith and Uzzell, who showed that the family of all su...
In this paper a random graph model $G_{\mathbb{Z}^2_N,p_d}$ is introduced, which is a combination of fixed torus grid edges in $(\mathbb{Z}/N \mathbb{Z})^2$ and some additional random ones. The random edges are called long, and the probability of having a long edge between vertices $u,v\in(\mathbb{Z}/N \mathbb{Z})^2$ with graph distance $d$ on the torus grid is $p_d=c/Nd$, where $c$ is some constant. We show that, {\em whp}, the diameter $D(G_{\mathbb{Z}^2_N,p_d})=\Theta (\lo...
Let $G_{n,p}^1$ be a superposition of the random graph $G_{n,p}$ and a one-dimensional lattice: the $n$ vertices are set to be on a ring with fixed edges between the consecutive vertices, and with random independent edges given with probability $p$ between any pair of vertices. Bootstrap percolation on a random graph is a process of spread of "activation" on a given realisation of the graph with a given number of initially active nodes. At each step those vertices which have ...
March 24, 2023
We study two-dimensional critical bootstrap percolation models. We establish that a class of these models including all isotropic threshold rules with a convex symmetric neighbourhood, undergoes a sharp metastability transition. This extends previous instances proved for several specific rules. The paper supersedes a draft by Alexander Holroyd and the first author from 2012. While it served a role in the subsequent development of bootstrap percolation universality, we have ch...
We study the percolation time of the $r$-neighbour bootstrap percolation model on the discrete torus $(\Z/n\Z)^d$. For $t$ at most a polylog function of $n$ and initial infection probabilities within certain ranges depending on $t$, we prove that the percolation time of a random subset of the torus is exactly equal to $t$ with high probability as $n$ tends to infinity. Our proof rests crucially on three new extremal theorems that together establish an almost complete understa...
In the $r$-neighbour bootstrap process on a graph $G$, vertices are infected (in each time step) if they have at least $r$ already-infected neighbours. Motivated by its close connections to models from statistical physics, such as the Ising model of ferromagnetism, and kinetically constrained spin models of the liquid-glass transition, the most extensively-studied case is the two-neighbour bootstrap process on the two-dimensional grid $[n]^2$. Around 15 years ago, in a major ...
December 25, 2013
This paper considers a class of probabilistic cellular automata undergoing a phase transition with an absorbing state. Denoting by ${\mathcal{U}}(x)$ the neighbourhood of site $x$, the transition probability is $T(\eta_x = 1 | \eta_{{\mathcal{U}}(x)}) = 0$ if $\eta_{{\mathcal{U}}(x)}= \mathbf{0}$ or $p$ otherwise, $\forall x \in \mathbb{Z}$. For any $\mathcal{U}$ there exists a non-trivial critical probability $p_c({\mathcal{U}})$ that separates a phase with an absorbing stat...