May 8, 2012
Similar papers 4
October 14, 2016
In an era of unprecedented deluge of (mostly unstructured) data, graphs are proving more and more useful, across the sciences, as a flexible abstraction to capture complex relationships between complex objects. One of the main challenges arising in the study of such networks is the inference of macroscopic, large-scale properties affecting a large number of objects, based solely on the microscopic interactions between their elementary constituents. Statistical physics, precis...
May 9, 2016
Community detection, the division of a network into dense subnetworks with only sparse connections between them, has been a topic of vigorous study in recent years. However, while there exist a range of powerful and flexible methods for dividing a network into a specified number of communities, it is an open question how to determine exactly how many communities one should use. Here we describe a mathematically principled approach for finding the number of communities in a ne...
September 22, 2015
We show that modularity maximization with the resolution parameter offers a unifying framework of graph partitioning. In this framework, we demonstrate that the spectral method exhibits universal detectability, irrespective of the value of the resolution parameter, as long as the graph is partitioned. Furthermore, we show that when the resolution parameter is sufficiently small, a first-order phase transition occurs, resulting in the graph being unpartitioned.
September 21, 2023
The study of complex networks has significantly advanced our understanding of community structures which serves as a crucial feature of real-world graphs. Detecting communities in graphs is a challenging problem with applications in sociology, biology, and computer science. Despite the efforts of an interdisciplinary community of scientists, a satisfactory solution to this problem has not yet been achieved. This review article delves into the topic of community detection in g...
June 8, 2006
Study of the cluster- or community structure of complex networks makes an important contribution to the understanding of networks at a functional level. Despite the many efforts, no definition of community has been agreed on and important aspects such as the statistical significance and theoretical limits of community detection are not well understood. We show how the problem of community detection can be mapped onto finding the ground state of an infinite range spin glass. T...
June 24, 2013
Spectral algorithms are classic approaches to clustering and community detection in networks. However, for sparse networks the standard versions of these algorithms are suboptimal, in some cases completely failing to detect communities even when other algorithms such as belief propagation can do so. Here we introduce a new class of spectral algorithms based on a non-backtracking walk on the directed edges of the graph. The spectrum of this operator is much better-behaved than...
June 22, 2015
One of the most widely used methods for community detection in networks is the maximization of the quality function known as modularity. Of the many maximization techniques that have been used in this context, some of the most conceptually attractive are the spectral methods, which are based on the eigenvectors of the modularity matrix. Spectral algorithms have, however, been limited by and large to the division of networks into only two or three communities, with divisions i...
March 20, 2020
This article considers spectral community detection in the regime of sparse networks with heterogeneous degree distributions, for which we devise an algorithm to efficiently retrieve communities. Specifically, we demonstrate that a conveniently parametrized form of regularized Laplacian matrix can be used to perform spectral clustering in sparse networks, without suffering from its degree heterogeneity. Besides, we exhibit important connections between this proposed matrix an...
February 5, 2018
With invaluable theoretical and practical benefits, the problem of partitioning networks for community structures has attracted significant research attention in scientific and engineering disciplines. In literature, Newman's modularity measure is routinely applied to quantify the quality of a given partition, and thereby maximizing the measure provides a principled way of detecting communities in networks. Unfortunately, the exact optimization of the measure is computational...
October 23, 2015
Rotation dynamics of eigenvectors of modular network adjacency matrices under random perturbations are presented. In the presence of $q$ communities, the number of eigenvectors corresponding to the $q$ largest eigenvalues form a "community" eigenspace and rotate together, but separately from that of the "bulk" eigenspace spanned by all the other eigenvectors. Using this property, the number of modules or clusters in a network can be estimated in an algorithm-independent way. ...