November 6, 2012
Similar papers 5
May 3, 2024
This is the continuation of the article \cite{Z23}. In this article we will give a detailed analysis of the quantum difference equation of the equivariant $K$-theory of the affine type $A$ quiver varieties. We will give a good representation of the quantum difference operator $\mathbf{M}_{\mathcal{L}}(z)$ such that the monodromy operator $\mathbf{B}_{\mathbf{m}}(z)$in the formula can be written in the $U_{q}(\mathfrak{sl}_2)$-form or in the $U_{q}(\hat{\mathfrak{gl}}_1)$-form...
December 4, 2013
We construct the quantized enveloping algebra of any simple Lie algebra of type ADE as the quotient of a Grothendieck ring arising from certain cyclic quiver varieties. In particular, the dual canonical basis of a one-half quantum group with respect to Lusztig's bilinear form is contained in the natural basis of the Grothendieck ring up to rescaling. This paper expands the categorification established by Hernandez and Leclerc to the whole quantum groups. It can be viewed as...
November 20, 2008
We prove a quantum version of the localization formula of Witten that relates invariants of a git quotient with the equivariant invariants of the action. Using the formula we prove a quantum version of an abelianization formula of S. Martin relating invariants of geometric invariant theory quotients by a group and its maximal torus, conjectured by Bertram, Ciocan-Fontanine, and Kim. By similar techniques we prove a quantum Lefschetz principle for holomorphic symplectic reduct...
November 19, 2019
We study representation theory of quantizations of Nakajima quiver varieties associated to bouquet quivers. We show that there are no finite dimensional representations of the quantizations $\overline{\mathcal{A}}_{\lambda}(n, \ell)$ if dim $V=n$ is greater than $1$ and so is the number of loops $\ell$. We find that there is a Hamiltonian torus action with finitely many fixed points in case $n\leq 3$, provide the dimensions of Hom-spaces between standard objects in category $...
December 5, 2019
Let $\Sigma$ be a finite type surface, and $G$ a complex algebraic simple Lie group with Lie algebra $\mathfrak{g}$. The quantum moduli algebra of $(\Sigma,G)$ is a quantization of the ring of functions of $X_G(\Sigma)$, the variety of $G$-characters of $\pi_1(\Sigma)$, introduced by Alekseev-Grosse-Schomerus and Buffenoir-Roche in the mid '90s. It can be realized as the invariant subalgebra of so-called graph algebras, which are $U_q(\mathfrak{g})$-module-algebras associated...
December 29, 2016
We explore the differential geometry of finite sets where the differential structure is given by a quiver rather than as more usual by a graph. In the finite group case we show that the data for such a differential calculus is described by certain Hopf quiver data as familiar in the context of path algebras. We explore a duality between geometry on the function algebra vs geometry on the group algebra, i.e. on the dual Hopf algebra, illustrated by the noncommutative Riemannia...
August 2, 1996
We discuss a general quantum theoretical example of quantum cohomology and show that various mathematical aspects of quantum cohomology have quantum mechanical and also observable significance.
January 25, 2002
Quantum universal enveloping algebras, quantum elliptic algebras and double (deformed) Yangians provide fundamental algebraic structures relevant for many integrable systems. They are described in the FRT formalism by R-matrices which are solutions of elliptic, trigonometric or rational type of the Yang--Baxter equation with spectral parameter or its generalization known as the Gervais--Neveu--Felder equation. While quantum groups and double Yangians appear as quasi-triangula...
August 30, 1995
This is a self-contained review on the theory of quantum group and its applications to modern physics. A brief introduction is given to the Yang-Baxter equation in integrable quantum field theory and lattice statistical physics. The quantum group is primarily introduced as a systematic method for solving the Yang-Baxter equation. Quantum group theory is presented within the framework of quantum double through quantizing Lie bi-algebra. Both the highest weight and the cyclic r...
March 5, 2018
For a Dynkin quiver $Q$ of type ADE and a sum $\beta$ of simple roots, we construct a bimodule over the quantum loop algebra and the quiver Hecke algebra of the corresponding type via equivariant K-theory, imitating Ginzburg-Reshetikhin-Vasserot's geometric realization of the quantum affine Schur-Weyl duality. Our construction is based on Hernandez-Leclerc's isomorphism between a certain graded quiver variety and the space of representations of the quiver $Q$ of dimension vec...