December 27, 2012
In the paper we develop the method of higher energies. New upper bounds for the additive energies of convex sets, sets A with small |AA| and |A(A+1)| are obtained. We prove new structural results, including higher sumsets, and develop the notion of dual popular difference sets.
Similar papers 1
December 2, 2015
These notes basically contain a material of two mini--courses which were read in G\"{o}teborg in April 2015 during the author visit of Chalmers & G\"{o}teborg universities and in Beijing in November 2015 during "Chinese--Russian Workshop on Exponential Sums and Sumsets". The article is a short introduction to a new area of Additive Combinatorics which is connected which so--called the higher sumsets as well as with the higher energies. We hope the notes will be helpful for a ...
May 13, 2014
In the paper we prove that any sumset or difference set has large E_3 energy. Also, we give a full description of families of sets having critical relations between some kind of energies such as E_k, T_k and Gowers norms. In particular, we give criteria for a set to be a 1) set of the form H+L, where H+H is small and L has "random structure", 2) set equals a disjoint union of sets H_j, each H_j has small doubling, 3) set having large subset A' with 2A' is equal to a set with ...
September 10, 2021
We prove a new class of low-energy decompositions which, amongst other consequences, imply that any finite set $A$ of integers may be written as $A = B \cup C$, where $B$ and $C$ are disjoint sets satisfying \[ |\{ (b_1, \dots, b_{2s}) \in B^{2s} \ | \ b_1 + \dots + b_{s} = b_{s+1} + \dots + b_{2s}\}| \ll_{s} |B|^{2s - (\log \log s)^{1/2 - o(1)}} \] and \[ |\{ (c_1, \dots, c_{2s}) \in C^{2s} \ | \ c_1 \dots c_{s} = c_{s+1} \dots c_{2s} \}| \ll_{s} |C|^{2s - (\log \log s)^{1/2...
October 5, 2014
In recent years some near-optimal estimates have been established for certain sum-product type estimates. This paper gives some first extremal results which provide information about when these bounds may or may not be tight. The main tool is a new result which provides a nontrivial upper bound on the multiplicative energy of a sum set or difference set.
February 10, 2016
We improve a previous sum--products estimates in R, namely, we obtain that max{|A+A|,|AA|} \gg |A|^{4/3+c}, where c any number less than 5/9813. New lower bounds for sums of sets with small the product set are found. Also we prove some pure energy sum--products results, improving a result of Balog and Wooley, in particular.
March 29, 2023
We obtain a generalization of the recent Kelley--Meka result on sets avoiding arithmetic progressions of length three. In our proof we develop the theory of the higher energies. Also, we discuss the case of longer arithmetic progressions, as well as a general family of norms, which includes the higher energies norms and Gowers norms.
March 13, 2018
Let $A \subset \mathbb{R}$ be finite. We quantitatively improve the Balog-Wooley decomposition, that is $A$ can be partitioned into sets $B$ and $C$ such that $$\max\{E^+(B) , E^{\times}(C)\} \lesssim |A|^{3 - 7/26}, \ \ \max \{E^+(B,A) , E^{\times}(C, A) \}\lesssim |A|^{3 - 1/4}.$$ We use similar decompositions to improve upon various sum-product estimates. For instance, we show $$ |A+A| + |A A| \gtrsim |A|^{4/3 + 5/5277}.$$
August 11, 2012
In the paper we find new inequalities involving the intersections $A\cap (A-x)$ of shifts of some subset $A$ from an abelian group. We apply the inequalities to obtain new upper bounds for the additive energy of multiplicative subgroups and convex sets and also a series another results on the connection of the additive energy and so--called higher moments of convolutions. Besides we prove new theorems on multiplicative subgroups concerning lower bounds for its doubling consta...
March 26, 2021
We show that for any finite set $A$ and an arbitrary $\varepsilon>0$ there is $k=k(\varepsilon)$ such that the higher energy ${\mathsf{E}}_k(A)$ is at most $|A|^{k+\varepsilon}$ unless $A$ has a very specific structure. As an application we obtain that any finite subset $A$ of the real numbers or the prime field either contains an additive Sidon--type subset of size $|A|^{1/2+c}$ or a multiplicative Sidon--type subset of size $|A|^{1/2+c}$.
October 13, 2011
We study higher moments of convolutions of the characteristic function of a set, which generalize a classical notion of the additive energy. Such quantities appear in many problems of additive combinatorics as well as in number theory. In our investigation we use different approaches including basic combinatorics, Fourier analysis and eigenvalues method to establish basic properties of higher energies. We provide also a sequence of applications of higher energies additive com...