March 29, 2023
We obtain a generalization of the recent Kelley--Meka result on sets avoiding arithmetic progressions of length three. In our proof we develop the theory of the higher energies. Also, we discuss the case of longer arithmetic progressions, as well as a general family of norms, which includes the higher energies norms and Gowers norms.
Similar papers 1
December 27, 2012
In the paper we develop the method of higher energies. New upper bounds for the additive energies of convex sets, sets A with small |AA| and |A(A+1)| are obtained. We prove new structural results, including higher sumsets, and develop the notion of dual popular difference sets.
December 2, 2015
These notes basically contain a material of two mini--courses which were read in G\"{o}teborg in April 2015 during the author visit of Chalmers & G\"{o}teborg universities and in Beijing in November 2015 during "Chinese--Russian Workshop on Exponential Sums and Sumsets". The article is a short introduction to a new area of Additive Combinatorics which is connected which so--called the higher sumsets as well as with the higher energies. We hope the notes will be helpful for a ...
This is the text accompanying my Bourbaki seminar on the work of Bloom and Sisask, Croot, Lev, and Pach, and Ellenberg and Gijswijt.
March 26, 2021
We show that for any finite set $A$ and an arbitrary $\varepsilon>0$ there is $k=k(\varepsilon)$ such that the higher energy ${\mathsf{E}}_k(A)$ is at most $|A|^{k+\varepsilon}$ unless $A$ has a very specific structure. As an application we obtain that any finite subset $A$ of the real numbers or the prime field either contains an additive Sidon--type subset of size $|A|^{1/2+c}$ or a multiplicative Sidon--type subset of size $|A|^{1/2+c}$.
May 13, 2014
In the paper we prove that any sumset or difference set has large E_3 energy. Also, we give a full description of families of sets having critical relations between some kind of energies such as E_k, T_k and Gowers norms. In particular, we give criteria for a set to be a 1) set of the form H+L, where H+H is small and L has "random structure", 2) set equals a disjoint union of sets H_j, each H_j has small doubling, 3) set having large subset A' with 2A' is equal to a set with ...
We give a self-contained exposition of the recent remarkable result of Kelley and Meka: if $A\subseteq \{1,\ldots,N\}$ has no non-trivial three-term arithmetic progressions then $\lvert A\rvert \leq \exp(-c(\log N)^{1/11})N$ for some constant $c>0$. Although our proof is identical to that of Kelley and Meka in all of the main ideas, we also incorporate some minor simplifications relating to Bohr sets. This eases some of the technical difficulties tackled by Kelley and Meka ...
March 1, 2005
The Gowers U^3 norm is one of a sequence of norms used in the study of arithmetic progressions. If G is an abelian group and A is a subset of G then the U^3(G) of the characteristic function 1_A is useful in the study of progressions of length 4 in A. We give a comprehensive study of the U^3(G) norm, obtaining a reasonably complete description of functions f : G -> C for which ||f||_{U^3} is large and providing links to recent results of Host, Kra and Ziegler in ergodic theor...
August 9, 2013
Combining Freiman's theorem with Balog-Szemeredi-Gowers theorem one can show that if an additive set has large additive energy, then a large piece of the set is contained in a generalized arithmetic progression of small rank and size. In this paper, we prove the above statement with the optimal bound for the rank of the progression. The proof strategy involves studying upper bounds for additive energy of subsets of R^d and Z^d.
A given subset $A$ of natural numbers is said to be complete if every element of $\N$ is the sum of distinct terms taken from $A$. This topic is strongly connected to the knapsack problem which is known to be NP complete. The main goal of the paper is to study the structure of subset sums in a higher dimension. We show 'dense' sets and generalized arithmetic progrssions in subset sums of certain sets.
November 11, 2004
We describe some of the machinery behind recent progress in establishing infinitely many arithmetic progressions of length $k$ in various sets of integers, in particular in arbitrary dense subsets of the integers, and in the primes.