July 8, 2013
Similar papers 4
March 13, 2018
Functional complex networks have meant a pivotal change in the way we understand complex systems, being the most outstanding one the human brain. These networks have classically been reconstructed using a frequentist approach that, while simple, completely disregards the uncertainty that derives from data finiteness. We here provide an alternative solution based on Bayesian inference, with link weights treated as random variables described by probability distributions, from w...
September 17, 2013
The analysis of networks characterized by links with heterogeneous intensity or weight suffers from two long-standing problems of arbitrariness. On one hand, the definitions of topological properties introduced for binary graphs can be generalized in non-unique ways to weighted networks. On the other hand, even when a definition is given, there is no natural choice of the (optimal) scale of link intensities (e.g. the money unit in economic networks). Here we show that these t...
March 21, 2017
Driven by growing interest in the sciences, industry, and among the broader public, a large number of empirical studies have been conducted in recent years of the structure of networks ranging from the internet and the world wide web to biological networks and social networks. The data produced by these experiments are often rich and multimodal, yet at the same time they may contain substantial measurement error. In practice, this means that the true network structure can dif...
May 2, 2024
A fundamental problem associated with the task of network reconstruction from dynamical or behavioral data consists in determining the most appropriate model complexity in a manner that prevents overfitting, and produces an inferred network with a statistically justifiable number of edges. The status quo in this context is based on $L_{1}$ regularization combined with cross-validation. However, besides its high computational cost, this commonplace approach unnecessarily ties ...
February 6, 2018
Link-prediction is an active research field within network theory, aiming at uncovering missing connections or predicting the emergence of future relationships from the observed network structure. This paper represents our contribution to the stream of research concerning missing links prediction. Here, we propose an entropy-based method to predict a given percentage of missing links, by identifying them with the most probable non-observed ones. The probability coefficients a...
October 11, 2018
In the last 15 years, statistical physics has been a very successful framework to model complex networks. On the theoretical side, this approach has brought novel insights into a variety of physical phenomena, such as self-organisation, scale invariance, emergence of mixed distributions and ensemble non-equivalence, that display unconventional features on heterogeneous networks. At the same time, thanks to their deep connection with information theory, statistical physics and...
September 15, 2010
Many systems in nature, society and technology can be described as networks, where the vertices are the system's elements and edges between vertices indicate the interactions between the corresponding elements. Edges may be weighted if the interaction strength is measurable. However, the full network information is often redundant because tools and techniques from network analysis do not work or become very inefficient if the network is too dense and some weights may just ref...
March 22, 2024
We propose a method for obtaining parsimonious decompositions of networks into higher order interactions which can take the form of arbitrary motifs.The method is based on a class of analytically solvable generative models, where vertices are connected via explicit copies of motifs, which in combination with non-parametric priors allow us to infer higher order interactions from dyadic graph data without any prior knowledge on the types or frequencies of such interactions. Cru...
December 13, 2022
This work introduces a method for fitting to the degree distributions of complex network datasets, such that the most appropriate distribution from a set of candidate distributions is chosen while maximizing the portion of the distribution to which the model is fit. Current methods for fitting to degree distributions in the literature are inconsistent and often assume a priori what distribution the data are drawn from. Much focus is given to fitting to the tail of the distrib...
March 2, 2011
In order to detect patterns in real networks, randomized graph ensembles that preserve only part of the topology of an observed network are systematically used as fundamental null models. However, their generation is still problematic. The existing approaches are either computationally demanding and beyond analytic control, or analytically accessible but highly approximate. Here we propose a solution to this long-standing problem by introducing an exact and fast method that a...