July 8, 2013
Similar papers 3
October 8, 2014
A major problem in the study of complex socioeconomic systems is represented by privacy issues$-$that can put severe limitations on the amount of accessible information, forcing to build models on the basis of incomplete knowledge. In this paper we investigate a novel method to reconstruct global topological properties of a complex network starting from limited information. This method uses the knowledge of an intrinsic property of the nodes (indicated as fitness), and the nu...
April 21, 2020
Inferring topological characteristics of complex networks from observed data is critical to understand the dynamical behavior of networked systems, ranging from the Internet and the World Wide Web to biological networks and social networks. Prior studies usually focus on the structure-based estimation to infer network sizes, degree distributions, average degrees, and more. Little effort attempted to estimate the specific degree of each vertex from a sampled induced graph, whi...
August 14, 2015
Network reconstruction is the first step towards understanding, diagnosing and controlling the dynamics of complex networked systems. It allows us to infer properties of the interaction matrix, which characterizes how nodes in a system directly interact with each other. Despite a decade of extensive studies, network reconstruction remains an outstanding challenge. The fundamental limitations governing which properties of the interaction matrix (e.g., adjacency pattern, sign p...
May 2, 2017
Topological metrics of graphs provide a natural way to describe the prominent features of various types of networks. Graph metrics describe the structure and interplay of graph edges and have found applications in many scientific fields. In this work, graph metrics are used in network estimation by developing optimisation methods that incorporate prior knowledge of a network's topology. The derivatives of graph metrics are used in gradient descent schemes for weighted undirec...
April 14, 2014
Complex networks grow subject to structural constraints which affect their measurable properties. Assessing the effect that such constraints impose on their observables is thus a crucial aspect to be taken into account in their analysis. To this end,we examine the effect of fixing the strength sequence in multi-edge networks on several network observables such as degrees, disparity, average neighbor properties and weight distribution using an ensemble approach. We provide a g...
June 24, 2016
Reconstructing patterns of interconnections from partial information is one of the most important issues in the statistical physics of complex networks. A paramount example is provided by financial networks. In fact, the spreading and amplification of financial distress in capital markets is strongly affected by the interconnections among financial institutions. Yet, while the aggregate balance sheets of institutions are publicly disclosed, information on single positions is ...
July 27, 2018
In this article the problem of reconstructing the pattern of connection between agents from partial empirical data in a macro-economic model is addressed, given a set of behavioral equations. This systemic point of view puts the focus on distributional and network effects, rather than time-dependence. Using the theory of complex networks we compare several models to reconstruct both the topology and the flows of money of the different types of monetary transactions, while imp...
August 12, 2009
We study the tailoring of structured random graph ensembles to real networks, with the objective of generating precise and practical mathematical tools for quantifying and comparing network topologies macroscopically, beyond the level of degree statistics. Our family of ensembles can produce graphs with any prescribed degree distribution and any degree-degree correlation function, its control parameters can be calculated fully analytically, and as a result we can calculate (a...
May 26, 2023
The structure of many financial networks is protected by privacy and has to be inferred from aggregate observables. Here we consider one of the most successful network reconstruction methods, producing random graphs with desired link density and where the observed constraints (related to the market size of each node) are replicated as averages over the graph ensemble, but not in individual realizations. We show that there is a minimum critical link density below which the met...
February 17, 2024
Networks of financial exposures are the key propagators of risk and distress among banks, but their empirical structure is not publicly available because of confidentiality. This limitation has triggered the development of methods of network reconstruction from partial, aggregate information. Unfortunately, even the best methods available fail in replicating the number of directed cycles, which on the other hand play a crucial role in determining graph spectra and hence the d...