July 29, 2013
Similar papers 4
June 21, 2015
A simple but efficient spectral approach for analyzing the community structure of complex networks is introduced. It works the same way for all types of networks, by spectrally splitting the adjacency matrix into a "unipartite" and a "multipartite" component. These two matrices reveal the structure of the network from different perspectives and can be analyzed at different levels of detail. Their entries, or the entries of their lower-rank approximations, provide measures of ...
July 11, 2007
The modularity of a network quantifies the extent, relative to a null model network, to which vertices cluster into community groups. We define a null model appropriate for bipartite networks, and use it to define a bipartite modularity. The bipartite modularity is presented in terms of a modularity matrix B; some key properties of the eigenspectrum of B are identified and used to describe an algorithm for identifying modules in bipartite networks. The algorithm is based on t...
April 18, 2011
A fundamental problem in the analysis of network data is the detection of network communities, groups of densely interconnected nodes, which may be overlapping or disjoint. Here we describe a method for finding overlapping communities based on a principled statistical approach using generative network models. We show how the method can be implemented using a fast, closed-form expectation-maximization algorithm that allows us to analyze networks of millions of nodes in reasona...
November 7, 2014
In this paper we study variants of the widely used spectral clustering that partitions a graph into k clusters by (1) embedding the vertices of a graph into a low-dimensional space using the bottom eigenvectors of the Laplacian matrix, and (2) grouping the embedded points into k clusters via k-means algorithms. We show that, for a wide class of graphs, spectral clustering gives a good approximation of the optimal clustering. While this approach was proposed in the early 1990s...
December 18, 2017
A precise definition of what constitutes a community in networks has remained elusive. Consequently, network scientists have compared community detection algorithms on benchmark networks with a particular form of community structure and classified them based on the mathematical techniques they employ. However, this comparison can be misleading because apparent similarities in their mathematical machinery can disguise different reasons for why we would want to employ community...
May 9, 2016
Community detection, the division of a network into dense subnetworks with only sparse connections between them, has been a topic of vigorous study in recent years. However, while there exist a range of powerful and flexible methods for dividing a network into a specified number of communities, it is an open question how to determine exactly how many communities one should use. Here we describe a mathematically principled approach for finding the number of communities in a ne...
February 19, 2004
We develop an algorithm to detect community structure in complex networks. The algorithm is based on spectral methods and takes into account weights and links orientations. Since the method detects efficiently clustered nodes in large networks even when these are not sharply partitioned, it turns to be specially suitable to the analysis of social and information networks. We test the algorithm on a large-scale data-set from a psychological experiment of word association. In t...
January 21, 2019
Complex networks or graphs are ubiquitous in sciences and engineering: biological networks, brain networks, transportation networks, social networks, and the World Wide Web, to name a few. Spectral graph theory provides a set of useful techniques and models for understanding `patterns of interconnectedness' in a graph. Our prime focus in this paper is on the following question: Is there a unified explanation and description of the fundamental spectral graph methods? There are...
November 23, 2016
Community detection, the decomposition of a graph into essential building blocks, has been a core research topic in network science over the past years. Since a precise notion of what constitutes a community has remained evasive, community detection algorithms have often been compared on benchmark graphs with a particular form of assortative community structure and classified based on the mathematical techniques they employ. However, this comparison can be misleading because ...
July 16, 2007
One of the most useful measures of cluster quality is the modularity of a partition, which measures the difference between the number of the edges joining vertices from the same cluster and the expected number of such edges in a random (unstructured) graph. In this paper we show that the problem of finding a partition maximizing the modularity of a given graph G can be reduced to a minimum weighted cut problem on a complete graph with the same vertices as G. We then show that...