July 29, 2013
Similar papers 5
July 11, 2008
Networks in nature possess a remarkable amount of structure. Via a series of data-driven discoveries, the cutting edge of network science has recently progressed from positing that the random graphs of mathematical graph theory might accurately describe real networks to the current viewpoint that networks in nature are highly complex and structured entities. The identification of high order structures in networks unveils insights into their functional organization. Recently, ...
August 26, 2016
Spectral clustering methods which are frequently used in clustering and community detection applications are sensitive to the specific graph constructions particularly when imbalanced clusters are present. We show that ratio cut (RCut) or normalized cut (NCut) objectives are not tailored to imbalanced cluster sizes since they tend to emphasize cut sizes over cut values. We propose a graph partitioning problem that seeks minimum cut partitions under minimum size constraints on...
June 23, 2023
Recent advances in machine learning research have produced powerful neural graph embedding methods, which learn useful, low-dimensional vector representations of network data. These neural methods for graph embedding excel in graph machine learning tasks and are now widely adopted. However, how and why these methods work -- particularly how network structure gets encoded in the embedding -- remain largely unexplained. Here, we show that shallow neural graph embedding methods ...
November 30, 2012
Because networks can be used to represent many complex systems, they have attracted considerable attention in physics, computer science, sociology, and many other disciplines. One of the most important areas of network science is the algorithmic detection of cohesive groups (i.e., "communities") of nodes. In this paper, we algorithmically detect communities in social networks and image data by optimizing multislice modularity. A key advantage of modularity optimization is tha...
November 3, 2016
In this article, we study spectral methods for community detection based on $ \alpha$-parametrized normalized modularity matrix hereafter called $ {\bf L}_\alpha $ in heterogeneous graph models. We show, in a regime where community detection is not asymptotically trivial, that $ {\bf L}_\alpha $ can be well approximated by a more tractable random matrix which falls in the family of spiked random matrices. The analysis of this equivalent spiked random matrix allows us to impro...
September 21, 2023
The study of complex networks has significantly advanced our understanding of community structures which serves as a crucial feature of real-world graphs. Detecting communities in graphs is a challenging problem with applications in sociology, biology, and computer science. Despite the efforts of an interdisciplinary community of scientists, a satisfactory solution to this problem has not yet been achieved. This review article delves into the topic of community detection in g...
September 27, 2007
We consider the problem of finding communities or modules in directed networks. The most common approach to this problem in the previous literature has been simply to ignore edge direction and apply methods developed for community discovery in undirected networks, but this approach discards potentially useful information contained in the edge directions. Here we show how the widely used benefit function known as modularity can be generalized in a principled fashion to incorpo...
June 7, 2016
We demonstrate an exact equivalence between two widely used methods of community detection in networks, the method of modularity maximization in its generalized form which incorporates a resolution parameter controlling the size of the communities discovered, and the method of maximum likelihood applied to the special case of the stochastic block model known as the planted partition model, in which all communities in a network are assumed to have statistically similar propert...
November 1, 2007
In recent years, spectral clustering has become one of the most popular modern clustering algorithms. It is simple to implement, can be solved efficiently by standard linear algebra software, and very often outperforms traditional clustering algorithms such as the k-means algorithm. On the first glance spectral clustering appears slightly mysterious, and it is not obvious to see why it works at all and what it really does. The goal of this tutorial is to give some intuition o...
November 10, 2023
The Louvain method was proposed 15 years ago as a heuristic method for the fast detection of communities in large networks. During this period, it has emerged as one of the most popular methods for community detection, the task of partitioning vertices of a network into dense groups, usually called communities or clusters. Here, after a short introduction to the method, we give an overview of the different generalizations and modifications that have been proposed in the liter...