November 12, 2013
Similar papers 5
June 29, 2015
We consider community detection in Degree-Corrected Stochastic Block Models (DC-SBM). We propose a spectral clustering algorithm based on a suitably normalized adjacency matrix. We show that this algorithm consistently recovers the block-membership of all but a vanishing fraction of nodes, in the regime where the lowest degree is of order log$(n)$ or higher. Recovery succeeds even for very heterogeneous degree-distributions. The used algorithm does not rely on parameters as i...
July 4, 2020
In network inference applications, it is often desirable to detect community structure, namely to cluster vertices into groups, or blocks, according to some measure of similarity. Beyond mere adjacency matrices, many real networks also involve vertex covariates that carry key information about underlying block structure in graphs. To assess the effects of such covariates on block recovery, we present a comparative analysis of two model-based spectral algorithms for clustering...
February 28, 2018
A common data mining task on networks is community detection, which seeks an unsupervised decomposition of a network into structural groups based on statistical regularities in the network's connectivity. Although many methods exist, the No Free Lunch theorem for community detection implies that each makes some kind of tradeoff, and no algorithm can be optimal on all inputs. Thus, different algorithms will over or underfit on different inputs, finding more, fewer, or just dif...
September 14, 2011
In this paper we extend our previous work on the stochastic block model, a commonly used generative model for social and biological networks, and the problem of inferring functional groups or communities from the topology of the network. We use the cavity method of statistical physics to obtain an asymptotically exact analysis of the phase diagram. We describe in detail properties of the detectability/undetectability phase transition and the easy/hard phase transition for the...
June 26, 2014
The classical setting of community detection consists of networks exhibiting a clustered structure. To more accurately model real systems we consider a class of networks (i) whose edges may carry labels and (ii) which may lack a clustered structure. Specifically we assume that nodes possess latent attributes drawn from a general compact space and edges between two nodes are randomly generated and labeled according to some unknown distribution as a function of their latent att...
July 8, 2018
We study the problem of community detection in a random hypergraph model which we call the stochastic block model for $k$-uniform hypergraphs ($k$-SBM). We investigate the exact recovery problem in $k$-SBM and show that a sharp phase transition occurs around a threshold: below the threshold it is impossible to recover the communities with non-vanishing probability, yet above the threshold there is an estimator which recovers the communities almost asymptotically surely. We al...
April 18, 2011
A fundamental problem in the analysis of network data is the detection of network communities, groups of densely interconnected nodes, which may be overlapping or disjoint. Here we describe a method for finding overlapping communities based on a principled statistical approach using generative network models. We show how the method can be implemented using a fast, closed-form expectation-maximization algorithm that allows us to analyze networks of millions of nodes in reasona...
August 23, 2010
Stochastic blockmodels have been proposed as a tool for detecting community structure in networks as well as for generating synthetic networks for use as benchmarks. Most blockmodels, however, ignore variation in vertex degree, making them unsuitable for applications to real-world networks, which typically display broad degree distributions that can significantly distort the results. Here we demonstrate how the generalization of blockmodels to incorporate this missing element...
July 29, 2013
We consider three distinct and well studied problems concerning network structure: community detection by modularity maximization, community detection by statistical inference, and normalized-cut graph partitioning. Each of these problems can be tackled using spectral algorithms that make use of the eigenvectors of matrix representations of the network. We show that with certain choices of the free parameters appearing in these spectral algorithms the algorithms for all three...
July 11, 2008
Networks in nature possess a remarkable amount of structure. Via a series of data-driven discoveries, the cutting edge of network science has recently progressed from positing that the random graphs of mathematical graph theory might accurately describe real networks to the current viewpoint that networks in nature are highly complex and structured entities. The identification of high order structures in networks unveils insights into their functional organization. Recently, ...