November 22, 2013
Similar papers 3
December 3, 2021
We establish new connections between percolation, bootstrap percolation, probabilistic cellular automata and deterministic ones. Surprisingly, by juggling with these in various directions, we effortlessly obtain a number of new results in these fields. In particular, we prove the sharpness of the phase transition of attractive absorbing probabilistic cellular automata, a class of bootstrap percolation models and kinetically constrained models. We further show how to recover a...
June 19, 2024
In the random $r$-neighbour bootstrap percolation process on a graph $G$, a set of initially infected vertices is chosen at random by retaining each vertex of $G$ independently with probability $p\in (0,1)$, and "healthy" vertices get infected in subsequent rounds if they have at least $r$ infected neighbours. A graph $G$ \emph{percolates} if every vertex becomes eventually infected. A central problem in this process is to determine the critical probability $p_c(G,r)$, at whi...
January 22, 2022
Consider a $p$-random subset $A$ of initially infected vertices in the discrete cube $[L]^d$, and assume that the neighbourhood of each vertex consists of the $a_i$ nearest neighbours in the $\pm e_i$-directions for each $i \in \{1,2,\dots, d\}$, where $a_1\le a_2\le \dots \le a_d$. Suppose we infect any healthy vertex $v\in [L]^d$ already having $r$ infected neighbours, and that infected sites remain infected forever. In this paper we determine the $(d-1)$-times iterated log...
August 24, 2007
Consider subcritical Bernoulli bond percolation with fixed parameter p<p_c. We define a dependent site percolation model by the following procedure: for each bond cluster, we colour all vertices in the cluster black with probability r and white with probability 1-r, independently of each other. On the square lattice, defining the critical probabilities for the site model and its dual, r_c(p) and r_c^*(p) respectively, as usual, we prove that r_c(p)+r_c^*(p)=1 for all subcriti...
November 13, 2020
We study a general class of interacting particle systems called kinetically constrained models (KCM) in two dimensions tightly linked to the monotone cellular automata called bootstrap percolation. There are three classes of such models, the most studied being the critical one. In a recent series of works it was shown that the KCM counterparts of critical bootstrap percolation models with the same properties split into two classes with different behaviour. Together with the...
January 13, 2012
Bootstrap percolation has been used effectively to model phenomena as diverse as emergence of magnetism in materials, spread of infection, diffusion of software viruses in computer networks, adoption of new technologies, and emergence of collective action and cultural fads in human societies. It is defined on an (arbitrary) network of interacting agents whose state is determined by the state of their neighbors according to a threshold rule. In a typical setting, bootstrap per...
July 6, 2009
We study bootstrap percolation (BP) on hyperbolic lattices obtained by regular tilings of the hyperbolic plane. Our work is motivated by the connection between the BP transition and the dynamical transition of kinetically constrained models, which are in turn relevant for the study of glass and jamming transitions. We show that for generic tilings there exists a BP transition at a nontrivial critical density, $0<\rho_c<1$. Thus, despite the presence of loops on all length sca...
July 26, 2018
Bootstrap percolation on a graph is a deterministic process that iteratively enlarges a set of occupied sites by adjoining points with at least $\theta$ occupied neighbors. The initially occupied set is random, given by a uniform product measure with a low density $p$. Our main focus is on this process on the product graph $\mathbb{Z}^2\times K_n^2$, where $K_n$ is a complete graph. We investigate how $p$ scales with $n$ so that a typical site is eventually occupied. Under cr...
March 28, 2020
In the Constrained-degree percolation model on a graph $(\mathbb{V},\mathbb{E})$ there are a sequence, $(U_e)_{e\in\mathbb{E}}$, of i.i.d. random variables with distribution $U[0,1]$ and a positive integer $k$. Each bond $e$ tries to open at time $U_e$, it succeeds if both its end-vertices would have degrees at most $k-1$. We prove a phase transition theorem for this model on the square lattice $\mathbb{L}^2$, as well as on the d-ary regular tree. We also prove that on the sq...
October 16, 2010
In r-neighbour bootstrap percolation on a graph G, a (typically random) set A of initially 'infected' vertices spreads by infecting (at each time step) vertices with at least r already-infected neighbours. This process may be viewed as a monotone version of the Glauber dynamics of the Ising model, and has been extensively studied on the d-dimensional grid $[n]^d$. The elements of the set A are usually chosen independently, with some density p, and the main question is to dete...