November 22, 2013
Similar papers 5
July 10, 2018
Ever since J.M. Hammersley showed the existence of phase-transitions regarding independent bond percolation on general $d \geq 2$ dimensional integer-lattices in the late 50's, the continuity (or discontinuity) of which is perhaps the most prominent and long-standing basic open problem in the subsequently extensively developed theory of percolation.
November 29, 2013
We study bootstrap percolation with the threshold parameter $\theta \geq 2$ and the initial probability $p$ on infinite periodic trees that are defined as follows. Each node of a tree has degree selected from a finite predefined set of non-negative integers and starting from any node, all nodes at the same graph distance from it have the same degree. We show the existence of the critical threshold $p_f(\theta) \in (0,1)$ such that with high probability, (i) if $p > p_f(\theta...
May 29, 2015
Bootstrap percolation is a type of cellular automaton on graphs, introduced as a simple model of the dynamics of ferromagnetism. Vertices in a graph can be in one of two states: `healthy' or `infected' and from an initial configuration of states, healthy vertices become infected by local rules. While the usual bootstrap processes are monotone in the sets of infected vertices, in this paper, a modification is examined in which infected vertices can return to a healthy state. V...
May 23, 2011
Consider an independent site percolation model with parameter $p \in (0,1)$ on $\Z^d,\ d\geq 2$ where there are only nearest neighbor bonds and long range bonds of length $k$ parallel to each coordinate axis. We show that the percolation threshold of such model converges to $p_c(\Z^{2d})$ when $k$ goes to infinity, the percolation threshold for ordinary (nearest neighbour) percolation on $\Z^{2d}$. We also generalize this result for models whose long range bonds have several ...
January 31, 2022
We analyze the bootstrap percolation process on the stochastic block model (SBM), a natural extension of the Erd\H{o}s--R\'{e}nyi random graph that incorporates the community structure observed in many real systems. In the SBM, nodes are partitioned into two subsets, which represent different communities, and pairs of nodes are independently connected with a probability that depends on the communities they belong to. Under mild assumptions on the system parameters, we prove t...
February 13, 2007
In majority bootstrap percolation on a graph G, an infection spreads according to the following deterministic rule: if at least half of the neighbours of a vertex v are already infected, then v is also infected, and infected vertices remain infected forever. Percolation occurs if eventually every vertex is infected. The elements of the set of initially infected vertices, A \subset V(G), are normally chosen independently at random, each with probability p, say. This process ...
April 19, 2019
Kinetically constrained models (KCM) are reversible interacting particle systems on $\mathbb{Z}^d$ with continuous-time constrained Glauber dynamics. They are a natural non-monotone stochastic version of the family of cellular automata with random initial state known as $\mathcal{U}$-bootstrap percolation. KCM have an interest in their own right, owing to their use for modelling the liquid-glass transition in condensed matter physics. In two dimensions there are three class...
July 7, 2011
Graph bootstrap percolation is a deterministic cellular automaton which was introduced by Bollob\'as in 1968, and is defined as follows. Given a graph $H$, and a set $G \subset E(K_n)$ of initially `infected' edges, we infect, at each time step, a new edge $e$ if there is a copy of $H$ in $K_n$ such that $e$ is the only not-yet infected edge of $H$. We say that $G$ percolates in the $H$-bootstrap process if eventually every edge of $K_n$ is infected. The extremal questions fo...
November 8, 2017
Based on extensive simulations, we conjecture that critically pinned interfaces in 2-dimensional isotropic random media with short range correlations are always in the universality class of ordinary percolation. Thus, in contrast to interfaces in $>2$ dimensions, there is no distinction between fractal (i.e., percolative) and rough but non-fractal interfaces. Our claim includes interfaces in zero-temperature random field Ising models (both with and without spontaneous nucleat...
July 9, 2014
This paper analyzes various questions pertaining to bootstrap percolation on the $d$-dimensional Hamming torus where each node is open with probability $p$ and the percolation threshold is 2. For each $d'<d$ we find the critical exponent for the event that a $d'$-dimensional subtorus becomes open and compute the limiting value of its probability under the critical scaling. For even $d'$, we use the Chen-Stein method to show that the number of $d'$-dimensional subtori that bec...