November 24, 2013
Similar papers 4
February 20, 2014
In this article we present method of solving some additive problems with primes. The method may be employed to the Goldbach-Euler conjecture and the twin primes conjecture. The presented method also makes it possible to obtain some interesting results related to the densities of sequences. The method is based on the direct construction of the Eratosthenes-type double sieve and does not use empirical and heuristic reasoning.
February 22, 2023
We show that there exists some $\delta > 0$ such that, for any set of integers $B$ with $B\cap[1,Y]\gg Y^{1-\delta}$ for all $Y \gg 1$, there are infinitely many primes of the form $a^2+b^2$ with $b\in B$. We prove a quasi-explicit formula for the number of primes of the form $a^2+b^2 \leq X$ with $b \in B$ for any $|B|=X^{1/2-\delta}$ with $\delta < 1/10$ and $B \subseteq [\eta X^{1/2},(1-\eta)X^{1/2}] \cap \mathbb{Z}$, in terms of zeros of Hecke $L$-functions on $\mathbb{Q}...
May 26, 2006
Let A be a subset of Z / NZ, and let R be the set of large Fourier coefficients of A. Properties of R have been studied in works of M.-C. Chang and B. Green. Our result is the following : the number of quadruples (r_1, r_2, r_3, r_4) \in R^4 such that r_1 + r_2 = r_3 + r_4 is at least |R|^{2+\epsilon}, \epsilon>0. This statement shows that the set R is highly structured. We also discuss some of the generalizations and applications of our result.
December 13, 2005
In this paper, we develop a large sieve type inequality with quadratic amplitude. We use the double large sieve to establish non-trivial bounds.
November 21, 2018
Let $p$ a large enough prime number. When $A$ is a subset of $\mathbb{F}_p\smallsetminus\{0\}$ of cardinality $|A|> (p+1)/3$, then an application of Cauchy-Davenport Theorem gives $\mathbb{F}_p\smallsetminus\{0\}\subset A(A+A)$. In this note, we improve on this and we show that if $|A|\ge 0.3051 p$ implies $A(A+A)\supseteq\mathbb{F}_p\smallsetminus\{0\}$. In the opposite direction we show that there exists a set $A$ such that $|A| > (1/8+o(1))p$ and $\mathbb{F}_p\smallsetminu...
September 26, 2011
We study the representations of large integers $n$ as sums $p_1^2 + ... + p_s^2$, where $p_1,..., p_s$ are primes with $| p_i - (n/s)^{1/2} | \le n^{\theta/2}$, for some fixed $\theta < 1$. When $s = 5$ we use a sieve method to show that all sufficiently large integers $n \equiv 5 \pmod {24}$ can be represented in the above form for $\theta > 8/9$. This improves on earlier work by Liu, L\"{u} and Zhan, who established a similar result for $\theta > 9/10$. We also obtain estim...
July 11, 2020
We prove that if $\varepsilon(m)\to 0$ arbitrarily slowly, then for almost all $m$ and any $A\subset\mathbb{Z}_m$ such that $A-A$ does not contain non-zero quadratic residues we have $|A|\leq m^{1/2-\varepsilon(m)}.$
February 6, 2022
Denote by $\mathcal{R}_p$ the set of all quadratic residues in $\mathbf{F}_p$ for each prime $p$. A conjecture of A. S\'ark\"ozy asserts, for all sufficiently large $p$, that no subsets $\mathcal{A},\mathcal{B}\subseteq\mathbf{F}_p$ with $|\mathcal{A}|,|\mathcal{B}|\geqslant2$ satisfy $\mathcal{A}+\mathcal{B}=\mathcal{R}_p$. In this paper, we show that if such subsets $\mathcal{A},\mathcal{B}$ do exist, then there are at least $(\log 2)^{-1}\sqrt p-1.6$ elements in $\mathcal{...
October 18, 2006
Let $A$ be a subset of $\mathbb{Z} / N\mathbb{Z}$ and let $\mathcal{R}$ be the set of large Fourier coefficients of $A$. Properties of $\mathcal{R}$ have been studied in works of M.-- C. Chang, B. Green and the author. In the paper we obtain some new results on sets of large exponential sums.
January 7, 2019
In this paper we obtain a sharp upper bound for the number of solutions to a certain diophantine inequality involving fractions with power denominator. This problem is motivated by a conjecture of Zhao concerning the spacing of such fractions in short intervals and the large sieve for power modulus. As applications of our estimate we show Zhao's conjecture is true except for a set of small measure and give a new $\ell_1 \rightarrow \ell_2$ large sieve inequality for power mod...