February 5, 2014
Similar papers 4
October 6, 2016
We expand the standard thermodynamic framework of a system coupled to a thermal reservoir by considering a stream of independently prepared units repeatedly put into contact with the system. These units can be in any nonequilibrium state and interact with the system with an arbitrary strength and duration. We show that this stream constitutes an effective resource of nonequilibrium free energy and identify the conditions under which it behaves as a heat, work or information r...
January 24, 2015
We introduce an information heat engine that is autonomous (i.e., without any time-dependent parameter) but has separated measurement and feedback processes. This model serves as a bridge between the other types of information heat engines inspired by Maxwell's demon; from the original Szilard-engine type systems to the autonomous demonic setups. By analyzing our model on the basis of a general framework introduced in our previous paper [N. Shiraishi and T. Sagawa, Phys. Rev....
November 3, 2010
Quantum measurement of a system can change its mean energy, as well as entropy. A selective measurement (classical or quantum) can be used as a "Maxwell's demon" to power a single-temperature heat engine, by decreasing the entropy. Quantum mechanically, so can a non-selective measurement, despite increasing the entropy of a thermal state. The maximal amount of work extractable following the measurement is given by the change in free energy: $W_{max}^{(non-)sel.}=\Delta E_{mea...
March 13, 2018
Recent advances in experimental techniques allow one to measure and control systems at the level of single molecules and atoms. Here gaining information about fluctuating thermodynamic quantities is crucial for understanding nonequilibrium thermodynamic behavior of small systems. To achieve this aim, stochastic thermodynamics offers a theoretical framework, and nonequilibrium equalities such as Jarzynski equality and fluctuation theorems provide key information about the fluc...
June 13, 2015
We introduce a deterministic chaotic system---the Szilard Map---that encapsulates the measurement, control, and erasure protocol by which Maxwellian Demons extract work from a heat reservoir. Implementing the Demon's control function in a dynamical embodiment, our construction symmetrizes Demon and thermodynamic system, allowing one to explore their functionality and recover the fundamental trade-off between the thermodynamic costs of dissipation due to measurement and due to...
July 6, 2015
We introduce a family of Maxwellian Demons for which correlations among information bearing degrees of freedom can be calculated exactly and in compact analytical form. This allows one to precisely determine Demon functional thermodynamic operating regimes, when previous methods either misclassify or simply fail due to approximations they invoke. This reveals that these Demons are more functional than previous candidates. They too behave either as engines, lifting a mass agai...
August 6, 2013
In this paper, we identify a class of time-varying port-Hamiltonian systems that is suitable for studying problems at the intersection of statistical mechanics and control of physical systems. Those port-Hamiltonian systems are able to modify their internal structure as well as their interconnection with the environment over time. The framework allows us to prove the First and Second laws of thermodynamics, but also lets us apply results from optimal and stochastic control th...
May 27, 2013
Maxwell's demon is a special case of a feedback controlled system, where information gathered by measurement is utilized by driving a system along a thermodynamic process that depends on the measurement outcome. The demon illustrates that with feedback one can design an engine that performs work by extracting energy from a single thermal bath. Besides the fundamental questions posed by the demon - the probabilistic nature of the Second Law, the relationship between entropy an...
February 20, 2018
We use continuous weak measurements of a driven superconducting qubit to experimentally study the information dynamics of a quantum Maxwell's demon. We show how information gained by a demon who can track single quantum trajectories of the qubit can be converted into work using quantum coherent feedback. We verify the validity of a quantum fluctuation theorem with feedback by utilizing information obtained along single trajectories. We demonstrate, in particular, that quantum...
September 28, 2015
In his famous letter in 1870, Maxwell describes how Joule's law can be violated "only by the intelligent action of a mere guiding agent", later coined as Maxwell's demon by Lord Kelvin. In this letter we study thermodynamics of information using an experimentally feasible Maxwell's demon setup based a single electron transistor capacitively coupled to a single electron box, where both the system and the Demon can be clearly identified. Such an engineered on-chip Demon measure...