February 5, 2014
Similar papers 5
June 13, 2007
The information-theoretic arguments presented in a recent publication on "Quantum discord and Maxwell's demons" are discussed, and found not to address the problem specified by Maxwell. Two interrelated and definitive exorcisms of the demon, one purely thermodynamic, and the other quantum-thermodynamic are briefly discussed. For each of the two exorcisms, the demon is shown to be incapable to accomplish his assignment neither because of limitations arising from information-th...
September 5, 2006
We propose a new thermodynamic equality and several inequalities concerning the relationship between work and information for an isothermal process with Maxwell's demon. Our approach is based on the formulation a la Jarzynski of the thermodynamic engine and on the quantum information-theoretic characterization of the demon. The lower bound of each inequality, which is expressed in terms of the information gain by the demon and the accuracy of the demon's measurement, gives th...
October 12, 2015
It is nearly 150 years since Maxwell challenged the validity of the second law of thermodynamics by imagining a tiny creature who could sort the molecules of a gas in such a way that would decrease entropy without exerting any work. The demon has been discussed largely using thought experiments, but it has recently become possible to exert control over nanoscale systems, just as Maxwell imagined, and the status of the second law has become a more practical matter, raising the...
October 1, 2015
We propose a setup based on two coupled quantum dots where thermodynamics of a measurement can be quantitatively characterized. The information obtained in the measurement can be utilized by performing feedback in a manner apparently breaking the second law of thermodynamics. In this way the setup can be operated as a Maxwell's Demon where both the measurement and feedback are performed separately by controlling an external parameter. This is analogous to the case of the orig...
July 1, 1998
Measurements --- interactions which establish correlations between a system and a recording device --- can be made thermodynamically reversible. One might be concerned that such reversibility will make the second law of thermodynamics vulnerable to the designs of the demon of choice, a selective version of Maxwell's demon. The strategy of the demon of choice is to take advantage of rare fluctuations to extract useful work, and to reversibly undo measurements which do not lead...
June 30, 2015
We study an autonomous quantum system which exhibits refrigeration under an information-work trade-off like a Maxwell demon. The system becomes correlated as a single "demon" qubit interacts sequentially with memory qubits while in contact with two heat reservoirs of different temperatures. Using strong subadditivity of the von Neumann entropy, we derive a global Clausius inequality to show thermodynamic advantages from access to correlated information. It is demonstrated, in...
April 26, 2021
We introduce a family of Generalized Continuous Maxwell Demons (GCMDs) operating on idealized single-bit equilibrium devices that combine the single-measurement Szilard and the repeated measurements of the Continuous Maxwell Demon protocols. We derive the cycle distributions for extracted work, information-content, and time and compute the power and information-to-work efficiency fluctuations for the different models. We show that the efficiency at maximum power is maximal fo...
May 12, 2021
The study of Maxwell demon and quantum entanglement is important because of its foundational significance in physics and its potential applications in quantum information. Previous research on the Maxwell demon has primarily focused on thermodynamics, taking into account quantum correlations. Here we consider from another perspective and ask whether quantum non-locality correlations can be simulated by performing work. The Maxwell demon-assisted Einstein-Podolsky-Rosen (EPR) ...
May 15, 2024
In scenarios coined Maxwell's demon, information on microscopic degrees of freedom is used to seemingly violate the second law of thermodynamics. This has been studied in the classical as well as the quantum domain. In this paper, we study an implementation of Maxwell's demon that can operate in both domains. In particular, we investigate information-to-work conversion over the quantum-to-classical transition. The demon continuously measures the charge state of a double quant...
February 3, 2014
We consider the stationary state of a Markov process on a bipartite system from the perspective of stochastic thermodynamics. One subsystem is used to extract work from a heat bath while being affected by the second subsystem. We show that the latter allows for a transparent and thermodynamically consistent interpretation of a Maxwell's demon. Moreover, we obtain an integral fluctuation theorem involving the transfer entropy from one subsystem to the other. Comparing three di...