March 4, 2014
Similar papers 3
June 13, 2013
Directional and pairwise measurements are often used to model inter-relationships in a social network setting. The Mixed-Membership Stochastic Blockmodel (MMSB) was a seminal work in this area, and many of its capabilities were extended since then. In this paper, we propose the \emph{Dynamic Infinite Mixed-Membership stochastic blockModel (DIM3)}, a generalised framework that extends the existing work to a potentially infinite number of communities and mixture memberships for...
November 29, 2017
We consider the problem of analyzing timestamped relational events between a set of entities, such as messages between users of an on-line social network. Such data are often analyzed using static or discrete-time network models, which discard a significant amount of information by aggregating events over time to form network snapshots. In this paper, we introduce a block point process model (BPPM) for continuous-time event-based dynamic networks. The BPPM is inspired by the ...
December 7, 2018
We consider the problem of estimating the location of a single change point in a dynamic stochastic block model. We propose two methods of estimating the change point, together with the model parameters. The first employs a least squares criterion function and takes into consideration the full structure of the stochastic block model and is evaluated at each point in time. Hence, as an intermediate step, it requires estimating the community structure based on a clustering algo...
June 12, 2015
The latent block model (LBM) is a flexible probabilistic tool to describe interactions between node sets in bipartite networks, but it does not account for interactions of time varying intensity between nodes in unknown classes. In this paper we propose a non stationary temporal extension of the LBM that clusters simultaneously the two node sets of a bipartite network and constructs classes of time intervals on which interactions are stationary. The number of clusters as well...
June 11, 2018
Time-varying networks are fast emerging in a wide range of scientific and business disciplines. Most existing dynamic network models are limited to a single-subject and discrete-time setting. In this article, we propose a mixed-effect multi-subject continuous-time stochastic blockmodel that characterizes the time-varying behavior of the network at the population level, meanwhile taking into account individual subject variability. We develop a multi-step optimization procedure...
August 9, 2009
We propose a family of statistical models for social network evolution over time, which represents an extension of Exponential Random Graph Models (ERGMs). Many of the methods for ERGMs are readily adapted for these models, including maximum likelihood estimation algorithms. We discuss models of this type and their properties, and give examples, as well as a demonstration of their use for hypothesis testing and classification. We believe our temporal ERG models represent a us...
March 1, 2019
There have been rapid developments in model-based clustering of graphs, also known as block modelling, over the last ten years or so. We review different approaches and extensions proposed for different aspects in this area, such as the type of the graph, the clustering approach, the inference approach, and whether the number of groups is selected or estimated. We also review models that combine block modelling with topic modelling and/or longitudinal modelling, regarding how...
April 10, 2022
Dynamic relational processes, such as e-mail exchanges, bank loans and scientific citations, are important examples of dynamic networks, in which the relational events consistute time-stamped edges. There are contexts where the network might be considered a reflection of underlying dynamics in some latent space, whereby nodes are associated with dynamic locations and their relative distances drive their interaction tendencies. As time passes nodes can change their locations a...
April 26, 2019
We discuss a variant of `blind' community detection, in which we aim to partition an unobserved network from the observation of a (dynamical) graph signal defined on the network. We consider a scenario where our observed graph signals are obtained by filtering white noise input, and the underlying network is different for every observation. In this fashion, the filtered graph signals can be interpreted as defined on a time-varying network. We model each of the underlying netw...
July 3, 2016
In the present paper we consider a dynamic stochastic network model. The objective is estimation of the tensor of connection probabilities $\Lambda$ when it is generated by a Dynamic Stochastic Block Model (DSBM) or a dynamic graphon. In particular, in the context of the DSBM, we derive a penalized least squares estimator $\widehat{\Lambda}$ of $\Lambda$ and show that $\widehat{\Lambda}$ satisfies an oracle inequality and also attains minimax lower bounds for the risk. We ext...