March 24, 2014
Similar papers 3
December 9, 2016
Barab\'asi-Albert's `Scale Free' model is the starting point for much of the accepted theory of the evolution of real world communication networks. Careful comparison of the theory with a wide range of real world networks, however, indicates that the model is in some cases, only a rough approximation to the dynamical evolution of real networks. In particular, the exponent $\gamma$ of the power law distribution of degree is predicted by the model to be exactly 3, whereas in a ...
May 31, 2013
The concept of scale-free networks has been widely applied across natural and physical sciences. Many claims are made about the properties of these networks, even though the concept of scale-free is often vaguely defined. We present tools and procedures to analyse the statistical properties of networks defined by arbitrary degree distributions and other constraints. Doing so reveals the highly likely properties, and some unrecognised richness, of scale-free networks, and cast...
September 7, 2020
We present analytical results for the structural evolution of random networks undergoing contraction processes via generic node deletion scenarios, namely, random deletion, preferential deletion and propagating deletion. Focusing on configuration model networks, which exhibit a given degree distribution $P_0(k)$ and no correlations, we show using a rigorous argument that upon contraction the degree distributions of these networks converge towards a Poisson distribution. To th...
May 25, 2004
We study the family of network models derived by requiring the expected properties of a graph ensemble to match a given set of measurements of a real-world network, while maximizing the entropy of the ensemble. Models of this type play the same role in the study of networks as is played by the Boltzmann distribution in classical statistical mechanics; they offer the best prediction of network properties subject to the constraints imposed by a given set of observations. We giv...
December 27, 2011
Stochastic blockmodels are generative network models where the vertices are separated into discrete groups, and the probability of an edge existing between two vertices is determined solely by their group membership. In this paper, we derive expressions for the entropy of stochastic blockmodel ensembles. We consider several ensemble variants, including the traditional model as well as the newly introduced degree-corrected version [Karrer et al. Phys. Rev. E 83, 016107 (2011)]...
November 28, 2012
We derive the sampling properties of random networks based on weights whose pairwise products parameterize independent Bernoulli trials. This enables an understanding of many degree-based network models, in which the structure of realized networks is governed by properties of their degree sequences. We provide exact results and large-sample approximations for power-law networks and other more general forms. This enables us to quantify sampling variability both within and acro...
March 8, 2008
The entropy of a hierarchical network topology in an ensemble of sparse random networks with "hidden variables" associated to its nodes, is the log-likelihood that a given network topology is present in the chosen ensemble.We obtain a general formula for this entropy,which has a clear simple interpretation in some simple limiting cases. The results provide new keys with which to solve the general problem of "fitting" a given network with an appropriate ensemble of random netw...
November 12, 2018
We propose a method to derive the stationary size distributions of a system, and the degree distributions of networks, using maximisation of the Gibbs-Shannon entropy. We apply this to a preferential attachment-type algorithm for systems of constant size, which contains exit of balls and urns (or nodes and edges for the network case). Knowing mean size (degree) and turnover rate, the power law exponent and exponential cutoff can be derived. Our results are confirmed by simula...
September 17, 2014
Scale-free networks, in which the distribution of the degrees obeys a power-law, are ubiquitous in the study of complex systems. One basic network property that relates to the structure of the links found is the degree assortativity, which is a measure of the correlation between the degrees of the nodes at the end of the links. Degree correlations are known to affect both the structure of a network and the dynamics of the processes supported thereon, including the resilience ...
October 30, 2017
In random graph models, the degree distribution of an individual node should be distinguished from the (empirical) degree distribution of the graph that records the fractions of nodes with given degree. We introduce a general framework to explore when these two degree distributions coincide asymptotically in large homogeneous random networks. The discussion is carried under three basic statistical assumptions on the degree sequences: (i) a weak form of distributional homogene...