March 11, 2024
Simulation frameworks such MemTorch, DNN+NeuroSim, and aihwkit are commonly used to facilitate the end-to-end co-design of memristive machine learning (ML) accelerators. These simulators can take device nonidealities into account and are integrated with modern ML frameworks. However, memristors in these simulators are modeled with either lookup tables or simple analytic models with basic nonlinearities. These simple models are unable to capture certain performance-critical as...
September 20, 2018
Neuromorphic networks of artificial neurons and synapses can solve computational hard problems with energy efficiencies unattainable for von Neumann architectures. For image processing, silicon neuromorphic processors outperform graphic processing units (GPUs) in energy efficiency by a large margin, but they deliver much lower chip-scale throughput. The performance-efficiency dilemma for silicon processors may not be overcome by Moore's law scaling of complementary metal-oxid...
August 19, 2022
The memristance of a memristor depends on the amount of charge flowing through it and when current stops flowing through it, it remembers the state. Thus, memristors are extremely suited for implementation of memory units. Memristors find great application in neuromorphic circuits as it is possible to couple memory and processing, compared to traditional Von-Neumann digital architectures where memory and processing are separate. Neural networks have a layered structure where ...
June 23, 2015
This article presents a review on the main applications of the fourth fundamental circuit element, named "memristor", which had been proposed for the first time by Leon Chua and has recently been developed by a team at HP Laboratories led by Stanley Williams. In particular, after a brief analysis of memristor theory with a description of the first memristor, manufactured at HP Laboratories, we present its main applications in the circuit design and computer technology, togeth...
February 14, 2019
In this paper, we introduce some interesting features of a memristor CNN (Cellular Neural Network). We first show that there is the similarity between the dynamics of memristors and neurons. That is, some kind of flux-controlled memristors can not respond to the sinusoidal voltage source quickly, namely, they can not switch `on' rapidly. Furthermore, these memristors have refractory period after switch `on', which means that it can not respond to further sinusoidal inputs unt...
August 21, 2009
We suggest an approach to use memristors (resistors with memory) in programmable analog circuits. Our idea consists in a circuit design in which low voltages are applied to memristors during their operation as analog circuit elements and high voltages are used to program the memristor's states. This way, as it was demonstrated in recent experiments, the state of memristors does not essentially change during analog mode operation. As an example of our approach, we have built s...
June 22, 2023
Memristive reservoirs draw inspiration from a novel class of neuromorphic hardware known as nanowire networks. These systems display emergent brain-like dynamics, with optimal performance demonstrated at dynamical phase transitions. In these networks, a limited number of electrodes are available to modulate system dynamics, in contrast to the global controllability offered by neuromorphic hardware through random access memories. We demonstrate that the learn-to-learn framewor...
August 14, 2016
Thermodynamic RAM (kT-RAM) is a neuromemristive co-processor design based on the theory of AHaH Computing and implemented via CMOS and memristors. The co-processor is a 2-D array of differential memristor pairs (synapses) that can be selectively coupled together (neurons) via the digital bit addressing of the underlying CMOS RAM circuitry. The chip is designed to plug into existing digital computers and be interacted with via a simple instruction set. Anti-Hebbian and Hebbian...
April 27, 2024
Reservoir computing is a brain-inspired machine learning framework for processing temporal data by mapping inputs into high-dimensional spaces. Physical reservoir computers (PRCs) leverage native fading memory and nonlinearity in physical substrates, including atomic switches, photonics, volatile memristors, and, recently, memcapacitors, to achieve efficient high-dimensional mapping. Traditional PRCs often consist of homogeneous device arrays, which rely on input encoding met...
March 17, 2022
Memristor-based neuromorphic computing could overcome the limitations of traditional von Neumann computing architectures -- in which data are shuffled between separate memory and processing units -- and improve the performance of deep neural networks. However, this will require accurate synaptic-like device performance, and memristors typically suffer from poor yield and a limited number of reliable conductance states. Here we report floating gate memristive synaptic devices ...