June 25, 2014
We study the class of monotone, two-state, deterministic cellular automata, in which sites are activated (or 'infected') by certain configurations of nearby infected sites. These models have close connections to statistical physics, and several specific examples have been extensively studied in recent years by both mathematicians and physicists. This general setting was first studied only recently, however, by Bollob\'as, Smith and Uzzell, who showed that the family of all such 'bootstrap percolation' models on $\mathbb{Z}^2$ can be naturally partitioned into three classes, which they termed subcritical, critical and supercritical. In this paper we determine the order of the threshold for percolation (complete occupation) for every critical bootstrap percolation model in two dimensions. This 'universality' theorem includes as special cases results of Aizenman and Lebowitz, Gravner and Griffeath, Mountford, and van Enter and Hulshof, significantly strengthens bounds of Bollob\'as, Smith and Uzzell, and complements recent work of Balister, Bollob\'as, Przykucki and Smith on subcritical models.
Similar papers 1
April 18, 2012
In this paper we study in complete generality the family of two-state, deterministic, monotone, local, homogeneous cellular automata in $\mathbb{Z}^d$ with random initial configurations. Formally, we are given a set $\mathcal{U}=\{X_1,\dots,X_m\}$ of finite subsets of $\mathbb{Z}^d\setminus\{\mathbf{0}\}$, and an initial set $A_0\subset\mathbb{Z}^d$ of `infected' sites, which we take to be random according to the product measure with density $p$. At time $t\in\mathbb{N}$, the...
March 25, 2022
In this paper we study monotone cellular automata in $d$ dimensions. We develop a general method for bounding the growth of the infected set when the initial configuration is chosen randomly, and then use this method to prove a lower bound on the critical probability for percolation that is sharp up to a constant factor in the exponent for every 'critical' model. This is one of three papers that together confirm the Universality Conjecture of Bollob\'as, Duminil-Copin, Morris...
November 22, 2013
We prove that there exist natural generalizations of the classical bootstrap percolation model on $\mathbb{Z}^2$ that have non-trivial critical probabilities, and moreover we characterize all homogeneous, local, monotone models with this property. Van Enter (in the case $d=r=2$) and Schonmann (for all $d \geq r \geq 2$) proved that $r$-neighbour bootstrap percolation models have trivial critical probabilities on $\mathbb{Z}^d$ for every choice of the parameters $d \geq r \g...
June 29, 2018
Bootstrap percolation is a wide class of monotone cellular automata with random initial state. In this work we develop tools for studying in full generality one of the three `universality' classes of bootstrap percolation models in two dimensions, termed subcritical. We introduce the new notion of `critical densities' serving the role of `difficulties' for critical models, but adapted to subcritical ones. We characterise the critical probability in terms of these quantities a...
November 13, 2020
We study a general class of interacting particle systems called kinetically constrained models (KCM) in two dimensions tightly linked to the monotone cellular automata called bootstrap percolation. There are three classes of such models, the most studied being the critical one. In a recent series of works it was shown that the KCM counterparts of critical bootstrap percolation models with the same properties split into two classes with different behaviour. Together with the...
June 23, 2018
In the $r$-neighbour bootstrap process on a graph $G$, vertices are infected (in each time step) if they have at least $r$ already-infected neighbours. Motivated by its close connections to models from statistical physics, such as the Ising model of ferromagnetism, and kinetically constrained spin models of the liquid-glass transition, the most extensively-studied case is the two-neighbour bootstrap process on the two-dimensional grid $[n]^2$. Around 15 years ago, in a major ...
October 21, 2004
Consider a cellular automaton with state space $\{0,1 \}^{{\mathbb Z}^2}$ where the initial configuration $\omega_0$ is chosen according to a Bernoulli product measure, 1's are stable, and 0's become 1's if they are surrounded by at least three neighboring 1's. In this paper we show that the configuration $\omega_n$ at time n converges exponentially fast to a final configuration $\bar\omega$, and that the limiting measure corresponding to $\bar\omega$ is in the universality c...
March 3, 2022
We study monotone cellular automata (also known as $\mathcal{U}$-bootstrap percolation) in $\mathbb{Z}^d$ with random initial configurations. Confirming a conjecture of Balister, Bollob\'as, Przykucki and Smith, who proved the corresponding result in two dimensions, we show that the critical probability is non-zero for all subcritical models.
April 6, 2021
We study a general class of interacting particle systems called kinetically constrained models (KCM) in two dimensions. They are tightly linked to the monotone cellular automata called bootstrap percolation. Among the three classes of such models, the critical ones are the most studied. Together with the companion paper by Mar\^ech\'e and the author, our work determines the logarithm of the infection time up to a constant factor for all critical KCM. This was previously kno...
February 20, 2010
Two-dimensional bootstrap percolation is a cellular automaton in which sites become 'infected' by contact with two or more already infected nearest neighbors. We consider these dynamics, which can be interpreted as a monotone version of the Ising model, on an n x n square, with sites initially infected independently with probability p. The critical probability p_c is the smallest p for which the probability that the entire square is eventually infected exceeds 1/2. Holroyd de...