July 15, 2014
Zaremba's conjecture (1971) states that every positive integer number can be represented as a denominator (continuant) of a finit continued fraction with all partial quotients being bounded by an absolute constant A. Recently (in 2011) several new theorems concerning this conjecture were proved by Bourgain and Kontorovich. The easiest of them states that the set of numbers satisfying Zaremba's conjecture with A = 50 has positive proportion in N. In 2014 the author with D. A. Frolenkov proved this result with A =5. In this paper the same theorem is proved with alphabet {1, 2, 3, 4, 10}
Similar papers 1
March 20, 2015
Zaremba's conjecture (1971) states that every positive integer number d can be represented as a denominator of a finite continued fraction b/d = [d1,d2,...,dk], with all partial quotients d1,d2,...,dk being bounded by an absolute constant A. Several new theorems concerning this conjecture were proved by Bourgain and Kontorovich in 2011. The easiest of them states that the set of numbers satisfying Zaremba's conjecture with A = 50 has positive proportion in natural numbers. In...
March 16, 2013
Zaremba's conjecture (1971) states that every positive integer number $d$ can be represented as a denominator (continuant) of a finite continued fraction $\frac{b}{d}=[d_1,d_2,...,d_{k}],$ with all partial quotients $d_1,d_2,...,d_{k}$ being bounded by an absolute constant $A.$ Recently (in 2011) several new theorems concerning this conjecture were proved by Bourgain and Kontorovich. The easiest of them states that the set of numbers satisfying Zaremba's conjecture with A=50 ...
October 15, 2012
Zaremba's conjecture (1971) states that every positive integer number $d$ can be represented as a denominator (continuant) of a finite continued fraction $\frac{b}{d}=[d_1,d_2,...,d_{k}],$ whose partial quotients $d_1,d_2,...,d_{k}$ belong to a finite alphabet $\A\subseteq\N.$ In this paper it is proved for an alphabet $\A,$ such that the Hausdorff dimension $\delta_{\A}$ of the set of infinite continued fractions whose partial quotients belong to $\A,$ that the set of number...
April 17, 2016
Zaremba's conjecture (1971) states that every positive integer number $d$ can be represented as a denominator (continuant) of a finite continued fraction $\frac{b}{d}=[d_1,d_2,\ldots,d_{k}],$ with all partial quotients $d_1,d_2,\ldots,d_{k}$ being bounded by an absolute constant $A.$ Recently (in 2011) several new theorems concerning this conjecture were proved by Bourgain and Kontorovich. The easiest of them states that the set of numbers satisfying Zaremba's conjecture with...
July 21, 2012
Zaremba's conjecture (1971) states that every positive integer number $d$ can be represented as a denominator (continuant) of a finite continued fraction $\frac{b}{d}=[d_1,d_2,...,d_{k}],$ with all partial quotients $d_1,d_2,...,d_{k}$ being bounded by an absolute constant $A.$ Recently (in 2011) several new theorems concerning this conjecture were proved by Bourgain and Kontorovich. The easiest of them states that the set of numbers satisfying Zaremba's conjecture with A=50 ...
March 2, 2011
It is shown that there is a constant A and a density one subset S of the positive integers, such that for all q in S there is some 1<=p<q, (p, q)=1, so that p/q has all its partial quotients bounded by A.
July 19, 2011
Zaremba's 1971 conjecture predicts that every integer appears as the denominator of a finite continued fraction whose partial quotients are bounded by an absolute constant. We confirm this conjecture for a set of density one.
October 14, 2013
We prove there exists a density one subset $\dd \subset \N$ such that each $n \in \dd$ is the denominator of a finite continued fraction with partial quotients bounded by 5.
July 19, 2012
Recently (in 2011) several new theorems concerning this conjecture were proved by Bourgain and Kontorovich. The easiest of them states that the set of numbers satisfying Zaremba's conjecture with A=50 has positive proportion in $\N.$ The proof of this theorem is rather complicated and refers to the spectral theory. In this paper,using only elementary methods, the same theorem is proved with A=13 .
October 15, 2023
Famous Zaremba's conjecture (1971) states that for each positive integer $q\geq2$, there exists positive integer $1\leq a <q$, coprime to $q$, such that if you expand a fraction $a/q$ into a continued fraction $a/q=[a_1,\ldots,a_n]$, all of the coefficients $a_i$'s are bounded by some absolute constant $\mathfrak k$, independent of $q$. Zaremba conjectured that this should hold for $\mathfrak k=5$. In 1986, Niederreiter proved Zaremba's conjecture for numbers of the form $q=2...