December 30, 2022
We prove in particular that for any sufficiently large prime $p$ there is $1\le a<p$ such that all partial quotients of $a/p$ are bounded by $O(\log p/\log \log p)$. For composite denominators a similar result is obtained. This improves the well--known Korobov bound concerning Zaremba's conjecture from the theory of continued fractions.
August 31, 2016
Zaremba's Conjecture concerns the formation of continued fractions with partial quotients restricted to a given alphabet. In order to answer the numerous questions that arrive from this conjecture, it is best to consider a semi-group, often denoted $\Gamma_{A}$, which arises naturally as a subset of $SL_2(\mathbb{Z})$ when considering finite continued fractions. To translate back from this semi-group into rational numbers, we select a projection mapping satisfying certain cri...
May 25, 2012
We show that, for any fixed $\varepsilon > 0$ and almost all primes $p$, the $g$-ary expansion of any fraction $m/p$ with $\gcd(m,p) = 1$ contains almost all $g$-ary strings of length $k < (5/24 - \varepsilon) \log_g p$. This complements a result of J. Bourgain, S. V. Konyagin, and I. E. Shparlinski that asserts that, for almost all primes, all $g$-ary strings of length $k < (41/504 -\varepsilon) \log_g p$ occur in the $g$-ary expansion of $m/p$.
October 17, 2023
Even though Zaremba's conjecture remains open, Bourgain and Kontorovich solved the problem for a full density subset. Nevertheless, there are only a handful of explicit sequences known to satisfy the strong version of the conjecture, all of which were obtained using essentially the same algorithm. In this note, we provide a refined algorithm using the folding lemma for continued fractions, which both generalizes and improves on the old one. As a result, we uncover new example...
November 18, 2019
We prove that for any prime $p$ there is a divisible by $p$ number $q = O(p^{30})$ such that for a certain positive integer $a$ coprime with $q$ the ratio $a/q$ has bounded partial quotients. In the other direction we show that there is an absolute constant $C>0$ such that for any prime $p$ exist divisible by $p$ number $q = O(p^{C})$ and a number $a$, $a$ coprime with $q$ such that all partial quotients of the ratio $a/q$ are bounded by two.
March 23, 2016
This paper is a continuation of a previous paper. Here, as there, we examine the problem of finding the maximum number of terms in a partial sequence of distinct unit fractions larger than 1/100 that sums to 1. In the previous paper, we found that the maximum number of terms is 42 and introduced a method for showing that. In this paper, we demonstrate that there are 27 possible solutions with 42 terms, and discuss how primes show that no 43-term solution exists.
October 24, 2003
We ask, for which $n$ does there exists a $k$, $1 \leq k < n$ and $(k,n)=1$, so that $k/n$ has a continued fraction whose partial quotients are bounded in average by a constant $B$? This question is intimately connected with several other well-known problems, and we provide a lower bound in the case of B=2.
September 8, 2011
We give certain generalization of Niederreiter's result concerning famous Zaremba's conjecture on existence of rational numbers with bounded partial quotients.
March 14, 2016
Using sharper Weyl sum estimates, we show that $H(10)\le 105$, improving upon the previous bound of $107$.
March 13, 2017
In the theory of continued fractions, Zaremba's conjecture states that there is a positive integer $M$ such that each integer is the denominator of a convergent of an ordinary continued fraction with partial quotients bounded by $M$. In this paper, to each such $M$ we associate a regular sequence---in the sense of Allouche and Shallit---and establish various properties and results concerning the generating function of the regular sequence. In particular, we determine the mini...