October 8, 2014
Similar papers 4
September 7, 2016
Research on generative models is a central project in the emerging field of network science, and it studies how statistical patterns found in real networks could be generated by formal rules. Output from these generative models is then the basis for designing and evaluating computational methods on networks, and for verification and simulation studies. During the last two decades, a variety of models has been proposed with an ultimate goal of achieving comprehensive realism f...
November 26, 2007
What is a complex network? How do we characterize complex networks? Which systems can be studied from a network approach? In this text, we motivate the use of complex networks to study and understand a broad panoply of systems, ranging from physics and biology to economy and sociology. Using basic tools from statistical physics, we will characterize the main types of networks found in nature. Moreover, the most recent trends in network research will be briefly discussed.
June 30, 2006
Real-world social and economic networks typically display a number of particular topological properties, such as a giant connected component, a broad degree distribution, the small-world property and the presence of communities of densely interconnected nodes. Several models, including ensembles of networks also known in social science as Exponential Random Graphs, have been proposed with the aim of reproducing each of these properties in isolation. Here we define a generaliz...
June 6, 2014
Complex networks underlie an enormous variety of social, biological, physical, and virtual systems. A profound complication for the science of complex networks is that in most cases, observing all nodes and all network interactions is impossible. Previous work addressing the impacts of partial network data is surprisingly limited, focuses primarily on missing nodes, and suggests that network statistics derived from subsampled data are not suitable estimators for the same netw...
February 12, 2007
We present a link rewiring mechanism to produce surrogates of a network where both the degree distribution and the rich--club connectivity are preserved. We consider three real networks, the AS--Internet, the protein interaction and the scientific collaboration. We show that for a given degree distribution, the rich--club connectivity is sensitive to the degree--degree correlation, and on the other hand the degree--degree correlation is constrained by the rich--club connectiv...
April 21, 2020
Inferring topological characteristics of complex networks from observed data is critical to understand the dynamical behavior of networked systems, ranging from the Internet and the World Wide Web to biological networks and social networks. Prior studies usually focus on the structure-based estimation to infer network sizes, degree distributions, average degrees, and more. Little effort attempted to estimate the specific degree of each vertex from a sampled induced graph, whi...
March 1, 2004
Among the proposed network models, the hidden variable (or good get richer) one is particularly interesting, even if an explicit empirical test of its hypotheses has not yet been performed on a real network. Here we provide the first empirical test of this mechanism on the world trade web, the network defined by the trade relationships between world countries. We find that the power-law distributed gross domestic product can be successfully identified with the hidden variable...
October 16, 2006
We use the theory of complex networks in order to quantitatively characterize the formation of communities in a particular financial market. The system is composed by different banks exchanging on a daily basis loans and debts of liquidity. Through topological analysis and by means of a model of network growth we can determine the formation of different group of banks characterized by different business strategy. The model based on Pareto's Law makes no use of growth or prefe...
October 22, 2010
In recent years, many network perturbation techniques, such as topological perturbations and service perturbations, were employed to study and improve the robustness of complex networks. However, there is no general way to evaluate the network robustness. In this paper, we propose a new global measure for a network, the reconstructability coefficient {\theta}, defined as the maximum number of eigenvalues that can be removed, subject to the condition that the adjacency matrix ...
October 11, 2018
In the last 15 years, statistical physics has been a very successful framework to model complex networks. On the theoretical side, this approach has brought novel insights into a variety of physical phenomena, such as self-organisation, scale invariance, emergence of mixed distributions and ensemble non-equivalence, that display unconventional features on heterogeneous networks. At the same time, thanks to their deep connection with information theory, statistical physics and...