October 8, 2014
Similar papers 5
January 31, 2019
Predicting missing links in real networks is an important problem in network science to which considerable efforts have been devoted, giving as a result a vast plethora of link prediction methods in the literature. In this work, we take a different point of view on the problem and study the theoretical limitations to the predictability of missing links. In particular, we hypothesise that there is an irreducible uncertainty in link prediction on real networks as a consequence ...
July 22, 2021
The full range of activity in a temporal network is captured in its edge activity data -- time series encoding the tie strengths or on-off dynamics of each edge in the network. However, in many practical applications, edge-level data are unavailable, and the network analyses must rely instead on node activity data which aggregates the edge-activity data and thus is less informative. This raises the question: Is it possible to use the static network to recover the richer edge ...
September 21, 2020
The ability to share social network data at the level of individual connections is beneficial to science: not only for reproducing results, but also for researchers who may wish to use it for purposes not foreseen by the data releaser. Sharing such data, however, can lead to serious privacy issues, because individuals could be re-identified, not only based on possible nodes' attributes, but also from the structure of the network around them. The risk associated with re-identi...
October 8, 2010
Rich-club, assortativity and clustering coefficients are frequently-used measures to estimate topological properties of complex networks. Here we find that the connectivity among a very small portion of the richest nodes can dominate the assortativity and clustering coefficients of a large network, which reveals that the rich-club connectivity is leveraged throughout the network. Our study suggests that more attention should be payed to the organization pattern of rich nodes,...
February 18, 2015
Many real-world networks are large, complex and thus hard to understand, analyze or visualize. The data about networks is not always complete, their structure may be hidden or they change quickly over time. Therefore, understanding how incomplete system differs from complete one is crucial. In this paper, we study the changes in networks under simplification (i.e., reduction in size). We simplify 30 real-world networks with six simplification methods and analyze the similarit...
June 24, 2016
Reconstructing patterns of interconnections from partial information is one of the most important issues in the statistical physics of complex networks. A paramount example is provided by financial networks. In fact, the spreading and amplification of financial distress in capital markets is strongly affected by the interconnections among financial institutions. Yet, while the aggregate balance sheets of institutions are publicly disclosed, information on single positions is ...
December 13, 2022
This work introduces a method for fitting to the degree distributions of complex network datasets, such that the most appropriate distribution from a set of candidate distributions is chosen while maximizing the portion of the distribution to which the model is fit. Current methods for fitting to degree distributions in the literature are inconsistent and often assume a priori what distribution the data are drawn from. Much focus is given to fitting to the tail of the distrib...
September 1, 2006
The choice of free parameters in network models is subjective, since it depends on what topological properties are being monitored. However, we show that the Maximum Likelihood (ML) principle indicates a unique, statistically rigorous parameter choice, associated to a well defined topological feature. We then find that, if the ML condition is incompatible with the built-in parameter choice, network models turn out to be intrinsically ill-defined or biased. To overcome this pr...
March 25, 2003
Inspired by empirical studies of networked systems such as the Internet, social networks, and biological networks, researchers have in recent years developed a variety of techniques and models to help us understand or predict the behavior of these systems. Here we review developments in this field, including such concepts as the small-world effect, degree distributions, clustering, network correlations, random graph models, models of network growth and preferential attachment...
July 27, 2018
In this article the problem of reconstructing the pattern of connection between agents from partial empirical data in a macro-economic model is addressed, given a set of behavioral equations. This systemic point of view puts the focus on distributional and network effects, rather than time-dependence. Using the theory of complex networks we compare several models to reconstruct both the topology and the flows of money of the different types of monetary transactions, while imp...