ID: 1502.01490

Bootstrap percolation on a graph with random and local connections

February 5, 2015

View on ArXiv

Similar papers 2

Bootstrap percolation on the stochastic block model with k communities

December 21, 2018

88% Match
Giovanni Luca Torrisi, Michele Garetto, Emilio Leonardi
Probability
Performance

We analyze the bootstrap percolation process on the stochastic block model (SBM), a natural extension of the Erd\"{o}s--R\'{e}nyi random graph that allows representing the "community structure" observed in many real systems. In the SBM, nodes are partitioned into subsets, which represent different communities, and pairs of nodes are independently connected with a probability that depends on the communities they belong to. Under mild assumptions on system parameters, we prove ...

Find SimilarView on arXiv

Bootstrap percolation on the high-dimensional Hamming graph

June 19, 2024

87% Match
Mihyun Kang, Michael Missethan, Dominik Schmid
Combinatorics
Probability

In the random $r$-neighbour bootstrap percolation process on a graph $G$, a set of initially infected vertices is chosen at random by retaining each vertex of $G$ independently with probability $p\in (0,1)$, and "healthy" vertices get infected in subsequent rounds if they have at least $r$ infected neighbours. A graph $G$ \emph{percolates} if every vertex becomes eventually infected. A central problem in this process is to determine the critical probability $p_c(G,r)$, at whi...

Find SimilarView on arXiv

Strict majority bootstrap percolation in the r-wheel

August 18, 2013

87% Match
Marcos Kiwi, Espanés Pablo Moisset de, Ivan Rapaport, ... , Theyssier Guillaume
Social and Information Netwo...
Probability

In this paper we study the strict majority bootstrap percolation process on graphs. Vertices may be active or passive. Initially, active vertices are chosen independently with probability p. Each passive vertex becomes active if at least half of its neighbors are active (and thereafter never changes its state). If at the end of the process all vertices become active then we say that the initial set of active vertices percolates on the graph. We address the problem of finding ...

Find SimilarView on arXiv

A phase transition in the evolution of bootstrap percolation processes on preferential attachment graphs

April 15, 2014

87% Match
Mohammed Amin Abdullah, Nikolaos Fountoulakis
Probability
Combinatorics

The theme of this paper is the analysis of bootstrap percolation processes on random graphs generated by preferential attachment. This is a class of infection processes where vertices have two states: they are either infected or susceptible. At each round every susceptible vertex which has at least $r\geq 2$ infected neighbours becomes infected and remains so forever. Assume that initially $a(t)$ vertices are randomly infected, where $t$ is the total number of vertices of the...

Find SimilarView on arXiv

Majority Bootstrap Percolation on $G(n,p)$

August 11, 2015

87% Match
Cecilia Holmgren, Tomas Juškevičius, Nathan Kettle
Probability

Majority bootstrap percolation on a graph $G$ is an epidemic process defined in the following manner. Firstly, an initially infected set of vertices is selected. Then step by step the vertices that have more infected than non-infected neighbours are infected. We say that percolation occurs if eventually all vertices in $G$ become infected. In this paper we study majority bootstrap percolation on the Erd\H{o}s-R\'enyi random graph $G(n,p)$ above the connectivity threshold. P...

Find SimilarView on arXiv

The second term for two-neighbour bootstrap percolation in two dimensions

June 23, 2018

87% Match
Ivailo Hartarsky, Robert Morris
Probability
Combinatorics

In the $r$-neighbour bootstrap process on a graph $G$, vertices are infected (in each time step) if they have at least $r$ already-infected neighbours. Motivated by its close connections to models from statistical physics, such as the Ising model of ferromagnetism, and kinetically constrained spin models of the liquid-glass transition, the most extensively-studied case is the two-neighbour bootstrap process on the two-dimensional grid $[n]^2$. Around 15 years ago, in a major ...

Find SimilarView on arXiv

Majority bootstrap percolation on the hypercube

February 13, 2007

87% Match
József Balogh, Béla Bollobás, Robert Morris
Combinatorics
Probability

In majority bootstrap percolation on a graph G, an infection spreads according to the following deterministic rule: if at least half of the neighbours of a vertex v are already infected, then v is also infected, and infected vertices remain infected forever. Percolation occurs if eventually every vertex is infected. The elements of the set of initially infected vertices, A \subset V(G), are normally chosen independently at random, each with probability p, say. This process ...

Find SimilarView on arXiv

Graph bootstrap percolation

July 7, 2011

87% Match
József Balogh, Béla Bollobás, Robert Morris
Combinatorics
Probability

Graph bootstrap percolation is a deterministic cellular automaton which was introduced by Bollob\'as in 1968, and is defined as follows. Given a graph $H$, and a set $G \subset E(K_n)$ of initially `infected' edges, we infect, at each time step, a new edge $e$ if there is a copy of $H$ in $K_n$ such that $e$ is the only not-yet infected edge of $H$. We say that $G$ percolates in the $H$-bootstrap process if eventually every edge of $K_n$ is infected. The extremal questions fo...

Find SimilarView on arXiv

Bootstrap Percolation on Complex Networks

March 29, 2010

87% Match
G J Baxter, S N Dorogovtsev, ... , Mendes J F F
Statistical Mechanics
Mathematical Physics
Probability
Physics and Society

We consider bootstrap percolation on uncorrelated complex networks. We obtain the phase diagram for this process with respect to two parameters: $f$, the fraction of vertices initially activated, and $p$, the fraction of undamaged vertices in the graph. We observe two transitions: the giant active component appears continuously at a first threshold. There may also be a second, discontinuous, hybrid transition at a higher threshold. Avalanches of activations increase in size a...

Find SimilarView on arXiv

The sharp threshold for bootstrap percolation in all dimensions

October 16, 2010

87% Match
József Balogh, Béla Bollobás, ... , Morris Robert
Probability
Combinatorics
Dynamical Systems
Mathematical Physics

In r-neighbour bootstrap percolation on a graph G, a (typically random) set A of initially 'infected' vertices spreads by infecting (at each time step) vertices with at least r already-infected neighbours. This process may be viewed as a monotone version of the Glauber dynamics of the Ising model, and has been extensively studied on the d-dimensional grid $[n]^d$. The elements of the set A are usually chosen independently, with some density p, and the main question is to dete...

Find SimilarView on arXiv