February 17, 2004
The basic theme of this paper is the fact that if $A$ is a finite set of integers, then the sum and product sets cannot both be small. A precise formulation of this fact is Conjecture 1 below due to Erd\H os-Szemer\'edi [E-S]. (see also [El], [T], and [K-T] for related aspects.) Only much weaker results or very special cases of this conjecture are presently known. One approach consists of assuming the sum set $A + A$ small and then deriving that the product set $AA$ is large ...
May 20, 2013
Let $B$ be a set of natural numbers of size $n$. We prove that the length of the longest arithmetic progression contained in the product set $B.B = \{bb'| \, b, b' \in B\}$ cannot be greater than $O(\frac{n\log^2 n}{\log \log n})$ and present an example of a product set containing an arithmetic progression of length $\Omega(n \log n)$. For sets of complex numbers we obtain the upper bound $O(n^{3/2})$.
January 31, 2018
It is established that there exists an absolute constant $c>0$ such that for any finite set $A$ of positive real numbers $$|AA+A| \gg |A|^{\frac{3}{2}+c}.$$ On the other hand, we give an explicit construction of a finite set $A \subset \mathbb R$ such that $|AA+A|=o(|A|^2)$, disproving a conjecture of Balog.
April 4, 2009
In the present paper we show that if A is a set of n real numbers, and the product set A.A has at most n^(1+c) elements, then the k-fold sumset kA has at least n^(log(k/2)/2 log 2 + 1/2 - f_k(c)) elements, where f_k(c) -> 0 as c -> 0. We believe that the methods in this paper might lead to a much stronger result; indeed, using a result of Trevor Wooley on Vinogradov's Mean Value Theorem and the Tarry-Escott Problem, we show that if |A.A| < n^(1+c), then |k(A.A)| > n^(Omega((k...
August 15, 2024
We obtain a polynomial criterion for a set to have a small doubling in terms of the common energy of its subsets.
March 28, 2017
This is a sequel to the paper arXiv:1312.6438 by the same authors. In this sequel, we quantitatively improve several of the main results of arXiv:1312.6438, and build on the methods therein. The main new results is that, for any finite set $A \subset \mathbb R$, there exists $a \in A$ such that $|A(A+a)| \gtrsim |A|^{\frac{3}{2}+\frac{1}{186}}$. We give improved bounds for the cardinalities of $A(A+A)$ and $A(A-A)$. Also, we prove that $|\{(a_1+a_2+a_3+a_4)^2+\log a_5 : a_i...
March 13, 2018
Let $A \subset \mathbb{R}$ be finite. We quantitatively improve the Balog-Wooley decomposition, that is $A$ can be partitioned into sets $B$ and $C$ such that $$\max\{E^+(B) , E^{\times}(C)\} \lesssim |A|^{3 - 7/26}, \ \ \max \{E^+(B,A) , E^{\times}(C, A) \}\lesssim |A|^{3 - 1/4}.$$ We use similar decompositions to improve upon various sum-product estimates. For instance, we show $$ |A+A| + |A A| \gtrsim |A|^{4/3 + 5/5277}.$$
May 13, 2014
In the paper we prove that any sumset or difference set has large E_3 energy. Also, we give a full description of families of sets having critical relations between some kind of energies such as E_k, T_k and Gowers norms. In particular, we give criteria for a set to be a 1) set of the form H+L, where H+H is small and L has "random structure", 2) set equals a disjoint union of sets H_j, each H_j has small doubling, 3) set having large subset A' with 2A' is equal to a set with ...
January 27, 2019
Let $A\subset [1, 2]$ be a $(\delta, \sigma)$-set with measure $|A|=\delta^{1-\sigma}$ in the sense of Katz and Tao. For $\sigma\in (1/2, 1)$ we show that $$ |A+A|+|AA|\gtrapprox \delta^{-c}|A|, $$ for $c=\frac{(1-\sigma)(2\sigma-1)}{6\sigma+4}$. This improves the bound of Guth, Katz, and Zahl for large $\sigma$.
September 29, 2021
Let $P \subset \mathbb R^2$ be a point set with cardinality $N$. We give an improved bound for the number of dot products determined by $P$, proving that, \[ |\{ p \cdot q :p,q \in P \}| \gg N^{2/3+c}. \] A crucial ingredient in the proof of this bound is a new superquadratic expander involving products and shifts. We prove that, for any finite set $X \subset \mathbb R$, there exist $z,z' \in X$ such that \[ \left|\frac{(zX+1)^{(2)}(z'X+1)^{(2)}}{(zX+1)^{(2)}(z'X+1)}\right| \...