February 12, 2015
Following the sum-product paradigm, we prove that for a set $B$ with polynomial growth, the product set $B.B$ cannot contain large subsets with size of order $|B|^2$ with small doubling. It follows that the additive energy of $B.B$ is asymptotically $o(|B|^6)$. In particular, we extend to sets of small doubling and polynomial growth the classical Multiplication Table theorem of Erd\H{o}s saying that $|[1..n]. [1..n]| = o(n^2)$.
Similar papers 1
February 29, 2008
We show that if A is a set having small subtractive doubling in an abelian group, that is |A-A|< K|A|, then there is a polynomially large subset B of A-A so that the additive energy of B is large than (1/K)^{1 - \epsilon) where epsilon is a positive, universal exponent. (1/37 seems to suffice.)
September 10, 2021
We prove a new class of low-energy decompositions which, amongst other consequences, imply that any finite set $A$ of integers may be written as $A = B \cup C$, where $B$ and $C$ are disjoint sets satisfying \[ |\{ (b_1, \dots, b_{2s}) \in B^{2s} \ | \ b_1 + \dots + b_{s} = b_{s+1} + \dots + b_{2s}\}| \ll_{s} |B|^{2s - (\log \log s)^{1/2 - o(1)}} \] and \[ |\{ (c_1, \dots, c_{2s}) \in C^{2s} \ | \ c_1 \dots c_{s} = c_{s+1} \dots c_{2s} \}| \ll_{s} |C|^{2s - (\log \log s)^{1/2...
December 1, 2017
We prove new results on additive properties of finite sets $A$ with small multiplicative doubling $|AA|\leq M|A|$ in the category of real/complex sets as well as multiplicative subgroups in the prime residue field. The improvements are based on new combinatorial lemmata, which may be of independent interest. Our main results are the inequality $$ |A-A|^3|AA|^5 \gtrsim |A|^{10}, $$ over the reals, "redistributing" the exponents in the textbook Elekes sum-product inequality a...
February 10, 2016
We improve a previous sum--products estimates in R, namely, we obtain that max{|A+A|,|AA|} \gg |A|^{4/3+c}, where c any number less than 5/9813. New lower bounds for sums of sets with small the product set are found. Also we prove some pure energy sum--products results, improving a result of Balog and Wooley, in particular.
It was asked by E. Szemer\'edi if, for a finite set $A\subset\mathbb{Z}$, one can improve estimates for $\max\{|A+A|,|A\cdot A|\}$, under the constraint that all integers involved have a bounded number of prime factors -- that is, each $a\in A$ satisfies $\omega(a)\leq k$. In this paper, answer Szemer\'edi's question in the affirmative by showing that this maximum is of order $|A|^{\frac{5}{3}-o(1)}$ provided $k\leq (\log|A|)^{1-\epsilon}$ for some $\epsilon>0$. In fact, this...
March 11, 2007
Let G be an arbitrary Abelian group and let A be a finite subset of G. A has small additive doubling if |A+A| < K|A| for some K>0. These sets were studied in papers of G.A. Freiman, Y. Bilu, I. Ruzsa, M.C.--Chang, B. Green and T.Tao. In the article we prove that if we have some minor restrictions on K then for any set with small doubling there exists a set Lambda, |Lambda| << K log |A| such that |A\cap Lambda| >> |A| / K^{1/2 + c}, where c > 0. In contrast to the previous res...
January 1, 2022
We prove that the size of the product set of any finite arithmetic progression $\mathcal{A}\subset \mathbb{Z}$ satisfies \[|\mathcal A \cdot \mathcal A| \ge \frac{|\mathcal A|^2}{(\log |\mathcal A|)^{2\theta +o(1)} } ,\] where $2\theta=1-(1+\log\log 2)/(\log 2)$ is the constant appearing in the celebrated Erd\H{o}s multiplication table problem. This confirms a conjecture of Elekes and Ruzsa from about two decades ago. If instead $\mathcal{A}$ is relaxed to be a subset of ...
October 16, 2014
We investigate the following generalisation of the 'multiplication table problem' of Erd\H{o}s: given a bipartite graph with $m$ edges, how large is the set of sizes of its induced subgraphs? Erd\H{o}s's problem of estimating the number of distinct products $ab$ with $a,b \le n$ is precisely the problem under consideration when the graph in question is the complete bipartite graph $K_{n,n}$. In this note, we prove that the set of sizes of the induced subgraphs of any bipartit...
March 19, 2015
We improve a result of Solymosi on sum-products in R, namely, we prove that max{|A+A|,|AA|}\gg |A|^{4/3+c}, where c>0 is an absolute constant. New lower bounds for sums of sets with small product set are found. Previous results are improved effectively for sets A from R with |AA| \le |A|^{4/3}.
June 5, 2008
We prove that the sumset or the productset of any finite set of real numbers, $A,$ is at least $|A|^{4/3-\epsilon},$ improving earlier bounds. Our main tool is a new upper bound on the multiplicative energy, $E(A,A).$