ID: 1503.05771

On sum sets of sets, having small product set

March 19, 2015

View on ArXiv
Sergei Konyagin, Ilya D. Shkredov
Mathematics
Combinatorics
Number Theory

We improve a result of Solymosi on sum-products in R, namely, we prove that max{|A+A|,|AA|}\gg |A|^{4/3+c}, where c>0 is an absolute constant. New lower bounds for sums of sets with small product set are found. Previous results are improved effectively for sets A from R with |AA| \le |A|^{4/3}.

Similar papers 1

New results on sum-products in R

February 10, 2016

95% Match
Sergei Konyagin, Ilya D. Shkredov
Combinatorics
Number Theory

We improve a previous sum--products estimates in R, namely, we obtain that max{|A+A|,|AA|} \gg |A|^{4/3+c}, where c any number less than 5/9813. New lower bounds for sums of sets with small the product set are found. Also we prove some pure energy sum--products results, improving a result of Balog and Wooley, in particular.

Find SimilarView on arXiv

An update on the sum-product problem

May 22, 2020

92% Match
Misha Rudnev, Sophie Stevens
Number Theory
Combinatorics

We improve the best known sum-product estimates over the reals. We prove that \[ \max(|A+A|,|AA|)\geq |A|^{\frac{4}{3} + \frac{2}{1167} - o(1)}\,, \] for a finite $A\subset \mathbb R$, following a streamlining of the arguments of Solymosi, Konyagin and Shkredov. We include several new observations to our techniques. Furthermore, \[ |AA+AA|\geq |A|^{\frac{127}{80} - o(1)}\,. \] Besides, for a convex set $A$ we show that \[ |A+A|\geq |A|^{\frac{30}{19}-o(1)}\,. \] This paper ...

Find SimilarView on arXiv

Variations on the sum-product problem II

March 28, 2017

90% Match
Brendan Murphy, Oliver Roche-Newton, Ilya Shkredov
Combinatorics
Number Theory

This is a sequel to the paper arXiv:1312.6438 by the same authors. In this sequel, we quantitatively improve several of the main results of arXiv:1312.6438, and build on the methods therein. The main new results is that, for any finite set $A \subset \mathbb R$, there exists $a \in A$ such that $|A(A+a)| \gtrsim |A|^{\frac{3}{2}+\frac{1}{186}}$. We give improved bounds for the cardinalities of $A(A+A)$ and $A(A-A)$. Also, we prove that $|\{(a_1+a_2+a_3+a_4)^2+\log a_5 : a_i...

Find SimilarView on arXiv

On the size of the set $AA+A$

January 31, 2018

90% Match
Oliver Roche-Newton, Imre Z. Ruzsa, ... , Shkredov Ilya D.
Combinatorics

It is established that there exists an absolute constant $c>0$ such that for any finite set $A$ of positive real numbers $$|AA+A| \gg |A|^{\frac{3}{2}+c}.$$ On the other hand, we give an explicit construction of a finite set $A \subset \mathbb R$ such that $|AA+A|=o(|A|^2)$, disproving a conjecture of Balog.

Find SimilarView on arXiv

Variations on the Sum-Product Problem

December 22, 2013

89% Match
Brendan Murphy, Oliver Roche-Newton, Ilya D. Shkredov
Combinatorics

This paper considers various formulations of the sum-product problem. It is shown that, for a finite set $A\subset{\mathbb{R}}$, $$|A(A+A)|\gg{|A|^{\frac{3}{2}+\frac{1}{178}}},$$ giving a partial answer to a conjecture of Balog. In a similar spirit, it is established that $$|A(A+A+A+A)|\gg{\frac{|A|^2}{\log{|A|}}},$$ a bound which is optimal up to constant and logarithmic factors. We also prove several new results concerning sum-product estimates and expanders, for example, s...

Find SimilarView on arXiv

Discretized sum-product for large sets

January 27, 2019

88% Match
Changhao Chen
Combinatorics
Classical Analysis and ODEs

Let $A\subset [1, 2]$ be a $(\delta, \sigma)$-set with measure $|A|=\delta^{1-\sigma}$ in the sense of Katz and Tao. For $\sigma\in (1/2, 1)$ we show that $$ |A+A|+|AA|\gtrapprox \delta^{-c}|A|, $$ for $c=\frac{(1-\sigma)(2\sigma-1)}{6\sigma+4}$. This improves the bound of Guth, Katz, and Zahl for large $\sigma$.

Find SimilarView on arXiv

A note on sum-product estimates over finite valuation rings

May 12, 2020

88% Match
Duc Hiep Pham
Number Theory

Let $\mathcal R$ be a finite valuation ring of order $q^r$ with $q$ a power of an odd prime number, and $\mathcal A$ be a set in $\mathcal R$. In this paper, we improve a recent result due to Yazici (2018) on a sum-product type problem. More precisely, we will prove that 1. If $|\mathcal A|\gg q^{r-\frac{1}{3}}$, then $$\max\left\lbrace |\mathcal A+\mathcal A|, |\mathcal A^2+\mathcal A^2|\right\rbrace \gg q^{\frac{r}{2}}|\mathcal A|^{\frac{1}{2}}.$$ 2. If $q^{r-\frac{3}{8}}...

Find SimilarView on arXiv

On additive bases of sets with small product set

June 7, 2016

88% Match
Ilya D. Shkredov, Dmitrii Zhelezov
Number Theory

We prove that finite sets of real numbers satisfying $|AA| \leq |A|^{1+\epsilon}$ with sufficiently small $\epsilon > 0$ cannot have small additive bases nor can they be written as a set of sums $B+C$ with $|B|, |C| \geq 2$. The result can be seen as a real analog of the conjecture of S\'ark\"ozy that multiplicative subgroups of finite fields of prime order are additively irreducible.

Find SimilarView on arXiv

A short proof of a near-optimal cardinality estimate for the product of a sum set

February 19, 2015

88% Match
Oliver Roche-Newton
Combinatorics

In this note it is established that, for any finite set $A$ of real numbers, there exist two elements $a,b \in A$ such that $$|(a+A)(b+A)| \gg \frac{|A|^2}{\log |A|}.$$ In particular, it follows that $|(A+A)(A+A)| \gg \frac{|A|^2}{\log |A|}$. The latter inequality had in fact already been established in an earlier work of the author and Rudnev (arXiv:1203.6237), which built upon the recent developments of Guth and Katz (arXiv:1011.4105) in their work on the Erd\H{o}s dist...

Find SimilarView on arXiv

The Erd\H{o}s-Szemer\'edi problem on sum set and product set

February 17, 2004

88% Match
Mei-Chu Chang
Combinatorics

The basic theme of this paper is the fact that if $A$ is a finite set of integers, then the sum and product sets cannot both be small. A precise formulation of this fact is Conjecture 1 below due to Erd\H os-Szemer\'edi [E-S]. (see also [El], [T], and [K-T] for related aspects.) Only much weaker results or very special cases of this conjecture are presently known. One approach consists of assuming the sum set $A + A$ small and then deriving that the product set $AA$ is large ...

Find SimilarView on arXiv