ID: 1503.05771

On sum sets of sets, having small product set

March 19, 2015

View on ArXiv

Similar papers 2

On the few products, many sums problem

December 1, 2017

87% Match
Brendan Murphy, Misha Rudnev, ... , Shteinikov Yurii N.
Combinatorics

We prove new results on additive properties of finite sets $A$ with small multiplicative doubling $|AA|\leq M|A|$ in the category of real/complex sets as well as multiplicative subgroups in the prime residue field. The improvements are based on new combinatorial lemmata, which may be of independent interest. Our main results are the inequality $$ |A-A|^3|AA|^5 \gtrsim |A|^{10}, $$ over the reals, "redistributing" the exponents in the textbook Elekes sum-product inequality a...

Find SimilarView on arXiv

Sums and Products of Distinct Sets and Distinct Elements in $\mathbb{C}$

February 20, 2009

87% Match
Karsten Chipeniuk
Combinatorics
Number Theory

Let $A$ and $B$ be finite subsets of $\mathbb{C}$ such that $|B|=C|A|$. We show the following variant of the sum product phenomenon: If $|AB|<\alpha|A|$ and $\alpha \ll \log |A|$, then $|kA+lB|\gg |A|^k|B|^l$. This is an application of a result of Evertse, Schlickewei, and Schmidt on linear equations with variables taking values in multiplicative groups of finite rank, in combination with an earlier theorem of Ruzsa about sumsets in $\mathbb{R}^d$. As an application of the ca...

Find SimilarView on arXiv

k-fold sums from a set with few products

April 4, 2009

87% Match
Ernie Croot, Derrick Hart
Combinatorics
Number Theory

In the present paper we show that if A is a set of n real numbers, and the product set A.A has at most n^(1+c) elements, then the k-fold sumset kA has at least n^(log(k/2)/2 log 2 + 1/2 - f_k(c)) elements, where f_k(c) -> 0 as c -> 0. We believe that the methods in this paper might lead to a much stronger result; indeed, using a result of Trevor Wooley on Vinogradov's Mean Value Theorem and the Tarry-Escott Problem, we show that if |A.A| < n^(1+c), then |k(A.A)| > n^(Omega((k...

Find SimilarView on arXiv

On a question of A. Balog

January 29, 2015

87% Match
Ilya D. Shkredov
Combinatorics
Number Theory

We give a partial answer to a conjecture of A. Balog, concerning the size of AA+A, where A is a finite subset of real numbers. Also, we prove several new results on the cardinality of A:A+A, AA+AA and A:A + A:A.

Find SimilarView on arXiv

A Sum-Product Estimate for Well Spaced Sets

October 3, 2020

87% Match
Shengwen Gan, Alina Harbuzova
Combinatorics
Classical Analysis and ODEs

We study the $\delta$-discretized sum-product estimates for well spaced sets. Our main result is: for a fixed $\alpha\in(1,\frac{3}{2}]$, we prove that for any $\sim|A|^{-1}$-separated set $A\subset[1,2]$ and $\delta=|A|^{-\alpha}$, we have: $\mathcal{N}(A+A, \delta)\cdot \mathcal{N}(AA, \delta) \gtrsim_{\epsilon}|A|\delta^{-1+\epsilon}$.

Find SimilarView on arXiv

Multi-fold sums from a set with few products

June 29, 2011

86% Match
Liangpan Li
Combinatorics

In this paper we show that for any $k\geq2$, there exist two universal constants $C_k,D_k>0$, such that for any finite subset $A$ of positive real numbers with $|AA|\leq M|A|$, $|kA|\geq \frac{C_k}{M^{D_k}}\cdot|A|^{\log_42k}.$

Find SimilarView on arXiv

On sum sets of convex functions

February 10, 2021

86% Match
Sophie Stevens, Audie Warren
Combinatorics
Number Theory

In this paper we prove new bounds for sums of convex or concave functions. Specifically, we prove that for all $A,B \subseteq \mathbb R$ finite sets, and for all $f,g$ convex or concave functions, we have $$|A + B|^{38}|f(A) + g(B)|^{38} \gtrsim |A|^{49}|B|^{49}.$$ This result can be used to obtain bounds on a number of two-variable expanders of interest, as well as to the asymmetric sum-product problem. We also adjust our technique to also prove the three-variable expans...

Find SimilarView on arXiv

Sums, Differences and Dilates

February 28, 2024

86% Match
Jonathan Cutler, Luke Pebody, Amites Sarkar
Combinatorics

Given a set of integers $A$ and an integer $k$, write $A+k\cdot A$ for the set $\{a+kb:a\in A,b\in A\}$. Hanson and Petridis showed that if $|A+A|\le K|A|$ then $|A+2\cdot A|\le K^{2.95}|A|$. At a presentation of this result, Petridis stated that the highest known value for $\frac{\log(|A+2\cdot A|/|A|)}{\log(|A+A|/|A|)}$ (bounded above by 2.95) was $\frac{\log 4}{\log 3}$. We show that, for all $\epsilon>0$, there exist $A$ and $K$ with $|A+A|\le K|A|$ but with $|A+2\cdot A|...

Find SimilarView on arXiv

On higher energy decompositions and the sum-product phenomenon

March 13, 2018

86% Match
George Shakan
Number Theory
Combinatorics

Let $A \subset \mathbb{R}$ be finite. We quantitatively improve the Balog-Wooley decomposition, that is $A$ can be partitioned into sets $B$ and $C$ such that $$\max\{E^+(B) , E^{\times}(C)\} \lesssim |A|^{3 - 7/26}, \ \ \max \{E^+(B,A) , E^{\times}(C, A) \}\lesssim |A|^{3 - 1/4}.$$ We use similar decompositions to improve upon various sum-product estimates. For instance, we show $$ |A+A| + |A A| \gtrsim |A|^{4/3 + 5/5277}.$$

Find SimilarView on arXiv

On a theorem of Schoen and Shkredov on sumsets of convex sets

August 22, 2011

86% Match
Liangpan Li
Combinatorics

A set of reals $A=\{a_1,...,a_n\}$ labeled in increasing order is called convex if there exists a continuous strictly convex function $f$ such that $f(i)=a_i$ for every $i$. Given a convex set $A$, we prove \[|A+A|\gg\frac{|A|^{14/9}}{(\log|A|)^{2/9}}.\] Sumsets of different summands and an application to a sum-product-type problem are also studied either as remarks or as theorems.

Find SimilarView on arXiv