November 30, 2014
We present the stochastic thermodynamics analysis of an open quantum system weakly coupled to multiple reservoirs and driven by a rapidly oscillating external field. The analysis is built on a modified stochastic master equation in the Floquet basis. Transition rates are shown to satisfy the local detailed balance involving the entropy flowing out of the reservoirs. The first and second law of thermodynamics are also identified at the trajectory level. Mechanical work is iden...
November 30, 2011
I formulate a quantum stochastic thermodynamics for the quantum trajectories of a continuously-monitored forced harmonic oscillator coupled to a thermal reservoir. Consistent trajectory-dependent definitions are introduced for work, heat, and entropy, through engineering the thermal reservoir from a sequence of two-level systems. Within this formalism the connection between irreversibility and entropy production is analyzed and confirmed by proving a detailed fluctuation theo...
November 5, 2019
Operational quantum stochastic thermodynamics is a recently proposed theory to study the thermodynamics of open systems based on the rigorous notion of a quantum stochastic process or quantum causal model. In there, a stochastic trajectory is defined solely in terms of experimentally accessible measurement results, which serve as the basis to define the corresponding thermodynamic quantities. In contrast to this observer-dependent point of view, a `black box', which evolves u...
October 1, 2018
We set up a framework for quantum stochastic thermodynamics based solely on experimentally controllable, but otherwise arbitrary interventions at discrete times. Using standard assumptions about the system-bath dynamics and insights from the repeated interaction framework, we define internal energy, heat, work and entropy at the trajectory level. The validity of the first law (at the trajectory level) and the second law (on average) is established. The theory naturally allows...
April 9, 2024
We introduce a numerical method to sample the distributions of charge, heat, and entropy production in open quantum systems coupled strongly to macroscopic reservoirs, with both temporal and energy resolution and beyond the linear-response regime. Our method exploits the mesoscopic-leads formulation, where macroscopic reservoirs are modeled by a finite collection of modes that are continuously damped toward thermal equilibrium by an appropriate Gorini-Kossakowski-Sudarshan-Li...
June 25, 2020
The stochastic thermodynamics provides a framework for the description of systems that are out of thermodynamic equilibrium. It is based on the assumption that the elementary constituents are acted by random forces that generate a stochastic dynamics, which is here represented by a Fokker-Planck-Kramers equation. We emphasize the role of the irreversible probability current, the vanishing of which characterizes the thermodynamic equilibrium and yields a special relation betwe...
March 15, 2023
Quantum thermodynamics seeks to extend non-equilibrium stochastic thermodynamics to small quantum systems where non-classical features are essential to its description. Such a research area has recently provided meaningful theoretical and experimental advances by exploring the wealth and the power of quantum features along with informational aspects of a system's thermodynamics. The relevance of such investigations is related to the fact that quantum technological devices are...
February 28, 2006
A quantum fluctuation theorem for a driven quantum subsystem interacting with its environment is derived based solely on the assumption that its reduced density matrix obeys a closed evolution equation i.e. a quantum master equation (QME). Quantum trajectories and their associated entropy, heat and work appear naturally by transforming the QME to a time dependent Liouville space basis that diagonalizes the instantaneous reduced density matrix of the subsystem. A quantum integ...
May 2, 2018
In this paper we aim at characterizing the effect of stochastic fluctuations on the distribution of the energy exchanged by a quantum system with an external environment under sequences of quantum measurements performed at random times. Both quenched and annealed averages are considered. The information about fluctuations is encoded in the quantum-heat probability density function, or equivalently in its characteristic function, whose general expression for a quantum system w...
April 26, 2021
In classical Markov jump processes, current fluctuations can only be reduced at the cost of increased dissipation. To explore how quantum effects influence this trade-off, we analyze the uncertainty of steady-state currents in Markovian open quantum systems. We first consider three instructive examples and then systematically minimize the product of uncertainty and entropy production for small open quantum systems. As our main result, we find that the thermodynamic cost of re...