July 29, 2015
Similar papers 5
June 24, 2022
A 1-independent bond percolation model on a graph $G$ is a probability distribution on the spanning subgraphs of $G$ in which, for all vertex-disjoint sets of edges $S_1$ and $S_2$, the states of the edges in $S_1$ are independent of the states of the edges in $S_2$. Such a model is said to percolate if the random subgraph has an infinite component with positive probability. In 2012 the first author and Bollob\'as defined $p_{\max}(G)$ to be the supremum of those $p$ for whic...
August 25, 2015
We consider a dynamical process on a graph $G$, in which vertices are infected (randomly) at a rate which depends on the number of their neighbours that are already infected. This model includes bootstrap percolation and first-passage percolation as its extreme points. We give a precise description of the evolution of this process on the graph $\mathbb{Z}^2$, significantly sharpening results of Dehghanpour and Schonmann. In particular, we determine the typical infection time ...
February 12, 2021
We consider the bond percolation model on the lattice $\mathbb{Z}^d$ ($d\ge 2$) with the constraint to be fully connected. Each edge is open with probability $p\in(0,1)$, closed with probability $1-p$ and then the process is conditioned to have a unique open connected component (bounded or unbounded). The model is defined on $\mathbb{Z}^d$ by passing to the limit for a sequence of finite volume models with general boundary conditions. Several questions and problems are invest...
April 17, 2018
We extend previous work of max-linear models on finite directed acyclic graphs to infinite graphs as well as random graphs, and investigate their relations to classical percolation theory, more particularly the impact of Bernoulli bond percolation on such models. We show that the critical probability of percolation on the oriented square lattice graph $\mathbb{Z}^2$ describes a phase transition in the obtained model. Focus is on the dependence introduced by this graph into th...
March 5, 2019
We propose very efficient algorithms for the bootstrap percolation and the diffusion percolation models by extending the Newman-Ziff algorithm of the classical percolation [M. E. J. Newman and R. M. Ziff, Phys. Rev. Lett. 85 (2000) 4104]. Using these algorithms and the finite-size-scaling, we calculated with high precision the percolation threshold and critical exponents in the eleven two-dimensional Archimedean lattices. We present the condition for the continuous percolatio...
November 29, 2013
We study bootstrap percolation with the threshold parameter $\theta \geq 2$ and the initial probability $p$ on infinite periodic trees that are defined as follows. Each node of a tree has degree selected from a finite predefined set of non-negative integers and starting from any node, all nodes at the same graph distance from it have the same degree. We show the existence of the critical threshold $p_f(\theta) \in (0,1)$ such that with high probability, (i) if $p > p_f(\theta...
September 24, 2009
In this note we study the geometry of the largest component C_1 of critical percolation on a finite graph G which satisfies the finite triangle condition, defined by Borgs et al. There it is shown that this component is of size n^{2/3}, and here we show that its diameter is n^{1/3} and that the simple random walk takes n steps to mix on it. Our results apply to critical percolation on several high-dimensional finite graphs such as the finite torus Z_n^d (with d large and n te...
October 4, 2009
Recent experimental studies of living neural networks reveal that their global activation induced by electrical stimulation can be explained using the concept of bootstrap percolation on a directed random network. The experiment consists in activating externally an initial random fraction of the neurons and observe the process of firing until its equilibrium. The final portion of neurons that are active depends in a non linear way on the initial fraction. The main result of t...
December 3, 2014
On a geometric model for complex networks (introduced by Krioukov et al.) we investigate the bootstrap percolation process. This model consists of random geometric graphs on the hyperbolic plane having $N$ vertices, a dependent version of the Chung-Lu model. The process starts with infection rate $p=p(N)$. Each uninfected vertex with at least $\mathbf{r}\geq 1$ infected neighbors becomes infected, remaining so forever. We identify a function $p_c(N)=o(1)$ such that a.a.s.\ wh...
March 1, 2023
We study the cluster-size distribution of supercritical long-range percolation on $\mathbb{Z}^d$, where two vertices $x,y\in\mathbb{Z}^d$ are connected by an edge with probability $\mathrm{p}(\|x-y\|):=p\min\{1,\beta^\alpha\|x-y\|^{-\alpha d}\}$ for parameters $p\in(0, 1)$, $\alpha>1$, and $\beta>0$. We show that when $\alpha>1+1/d$, and either $\beta$ or $p$ is sufficiently large, the probability that the origin is in a finite cluster of size at least $k$ decays as $\exp\big...