December 2, 2015
These notes basically contain a material of two mini--courses which were read in G\"{o}teborg in April 2015 during the author visit of Chalmers & G\"{o}teborg universities and in Beijing in November 2015 during "Chinese--Russian Workshop on Exponential Sums and Sumsets". The article is a short introduction to a new area of Additive Combinatorics which is connected which so--called the higher sumsets as well as with the higher energies. We hope the notes will be helpful for a reader who is interested in the field.
Similar papers 1
December 27, 2012
In the paper we develop the method of higher energies. New upper bounds for the additive energies of convex sets, sets A with small |AA| and |A(A+1)| are obtained. We prove new structural results, including higher sumsets, and develop the notion of dual popular difference sets.
October 27, 2023
This is a survey of old and new problems and results in additive number theory.
October 13, 2011
We study higher moments of convolutions of the characteristic function of a set, which generalize a classical notion of the additive energy. Such quantities appear in many problems of additive combinatorics as well as in number theory. In our investigation we use different approaches including basic combinatorics, Fourier analysis and eigenvalues method to establish basic properties of higher energies. We provide also a sequence of applications of higher energies additive com...
November 3, 2022
In this survey paper we discuss some recent results and related open questions in additive combinatorics, in particular, questions about sumsets in finite abelian groups.
June 2, 2016
A survey paper on some recent results on additive problems with prime powers.
May 13, 2014
In the paper we prove that any sumset or difference set has large E_3 energy. Also, we give a full description of families of sets having critical relations between some kind of energies such as E_k, T_k and Gowers norms. In particular, we give criteria for a set to be a 1) set of the form H+L, where H+H is small and L has "random structure", 2) set equals a disjoint union of sets H_j, each H_j has small doubling, 3) set having large subset A' with 2A' is equal to a set with ...
May 21, 2017
This text contains over three hundred specific open questions on various topics in additive combinatorics, each placed in context by reviewing all relevant results. While the primary purpose is to provide an ample supply of problems for student research, it is hopefully also useful for a wider audience. It is the author's intention to keep the material current, thus all feedback and updates are greatly appreciated.
March 29, 2023
We obtain a generalization of the recent Kelley--Meka result on sets avoiding arithmetic progressions of length three. In our proof we develop the theory of the higher energies. Also, we discuss the case of longer arithmetic progressions, as well as a general family of norms, which includes the higher energies norms and Gowers norms.
September 10, 2021
We prove a new class of low-energy decompositions which, amongst other consequences, imply that any finite set $A$ of integers may be written as $A = B \cup C$, where $B$ and $C$ are disjoint sets satisfying \[ |\{ (b_1, \dots, b_{2s}) \in B^{2s} \ | \ b_1 + \dots + b_{s} = b_{s+1} + \dots + b_{2s}\}| \ll_{s} |B|^{2s - (\log \log s)^{1/2 - o(1)}} \] and \[ |\{ (c_1, \dots, c_{2s}) \in C^{2s} \ | \ c_1 \dots c_{s} = c_{s+1} \dots c_{2s} \}| \ll_{s} |C|^{2s - (\log \log s)^{1/2...
June 8, 2021
In this note we find the optimal lower bound for the size of the sumsets $HA$ and $H\,\hat{}A$ over finite sets $H, A$ of nonnegative integers, where $HA = \bigcup_{h\in H} hA$ and $H\,\hat{}A = \bigcup_{h\in H} h\,\hat{}A$. We also find the underlying algebraic structure of the sets $A$ and $H$ for which the size of the sumsets $HA$ and $H\,\hat{}A$ is minimum.